I am using vertex ai's python SDK and it's built on top of Kubeflow pipelines. In it, you supposedly can do this:
train_op = (sklearn_classification_train(
train_data = data_op.outputs['train_out']
).
set_cpu_limit(training_cpu_limit).
set_memory_limit(training_memory_limit).
add_node_selector_constraint(training_node_selector).
set_gpu_limit(training_gpu_limit)
)
where you can add these functions (set_cpu_limit
, set_memory_limit
, add_node_selector
, and set_gpu_limit
) onto your component. I've haven't used this syntax before.
How I can optionally use each 'sub function' only if the variables are specified each function?
For example, if training_gpu_limit
isn't set, I don't want to execute set_gpu_limit
on the component.