I am running a fresh Windows Server 2019 Data Science virtual machine in Azure. I'm using the NC6_Promo size which has the Tesla K80 GPU. After the deployment is complete I tried to check if CUDA was working using the following python commands:
import torch
torch.cuda.is_available()
Out[3]: False
This returns a false statement indicating CUDA is not available.
When checking with the nvidia-smi tooling I get the following response:
Microsoft Windows [Version 10.0.17763.2300]
(c) 2018 Microsoft Corporation. All rights reserved.
C:\Users\administrator>nvidia-smi
Wed Dec 22 11:23:36 2021
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 472.50 Driver Version: 472.50 CUDA Version: 11.4 |
|-------------------------------+----------------------+----------------------+
| GPU Name TCC/WDDM | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Tesla K80 TCC | 00000001:00:00.0 Off | 0 |
| N/A 42C P8 28W / 149W | 9MiB / 11448MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| No running processes found |
+-----------------------------------------------------------------------------+
Which tells me CUDA version 11.4 is available.
The device manager of the virtual machine also show the Tesla K80 GPU as installed and working properly:
Steps I've taken so far:
- Enable the nVidia virtual machine extension
- (Re)installed the latest nVidia drivers for the Tesla K80
- Upgraded CUDA to version 11.5
However I still can't use the GPU from PyTorch. Any other steps I could take to get this working? This really should work out of the box.