How to put a stopping condition on jacobian (or gradient) for Newton-CG methode? I want the algorithme to stop when the jacobian reaches to 1e-2, is it possible to do with Newton-CG ??
input:
scipy.optimize.minimize(f, [5.0,1.0,2.0,5.0], args=Data, method='Newton-CG',jac=Jacf)
output:
jac: array([7.64265411e-08, 1.74985718e-08, 4.12408407e-07, 5.02972841e-08])
message: 'Optimization terminated successfully.'
nfev: 12
nhev: 0
nit: 11
njev: 68
status: 0
success: True
x: array([0.22545395, 0.3480084 , 1.06811724, 1.64873479])
in BFGS method, which is symilar to Newton-CG, there is a gtol
option, it allows to stop the iteration when the gradient reaches to some value. But in Newton-CG theres no that type of option.
Does anyone know how to stop the iteration when the jacobien reaches to 1e-2.
Here are some details to reproduce my code:
def convert_line2matrix(a):
n = len(a)
if (np.sqrt(n) % 1 == 0) :
d = int(np.sqrt(n))
Mat = np.zeros((d,d))
for i in range(d):
for j in range(d):
Mat[i,j] = a[j+d*i]
else:
raise ValueError(f"{a} cant be converted into a (n x n) matrix. The array has {len(a)} elements, \n\t thus impossible to build a square matrix with {len(a)} elements.")
return Mat
def convert_matrix2line(Matrix):
result = []
dim = len(Matrix)
for i in range(dim):
for j in range(dim):
result.append(Matrix[i,j])
return np.array(result)
my_data = np.array([[0.21530249, 0.32450331, 0 ],
[0.1930605 , 0.31788079, 0 ],
[0.17793594, 0.31788079, 0 ],
[0.16459075, 0.31125828, 1 ],
[0.24822064, 0.31125828, 0 ],
[0.28647687, 0.32450331, 0 ],
[0.32829181, 0.31788079, 0 ],
[0.38879004, 0.32450331, 0 ],
[0.42882562, 0.32450331, 0 ],
[0.47419929, 0.32450331, 0 ],
[0.5044484 , 0.32450331, 0 ],
[0.1797153 , 0.31125828, 0 ],
[0.16548043, 0.31125828, 1 ],
[0.17793594, 0.29801325, 1 ],
[0.1930605 , 0.31788079, 0 ]])
Data = pd.DataFrame(my_data, columns=['X_1','X_2', 'Allum'])
def logLB(params,Data):
B = convert_line2matrix(params)
X = np.array(Data.iloc[:,:len(B)])
Y = np.array(Data.iloc[:,len(B)])
result = 0
n = len(Data)
BB = np.transpose(B) @ B
for i in range(n):
if(1-np.exp(-X[i].T @ BB @ X[i]) > 0):
result += Y[i]*(-np.transpose(X[i]) @ BB @ X[i]) + (1 - Y[i])*np.log(1-np.exp(-X[i].T @ BB @ X[i]))
return result
def f(params, Data):
return -logLB(params, Data)
def dlogLB(params, Data):
B = convert_line2matrix(params)
X = np.array(Data.iloc[:,:len(B)])
Y = np.array(Data.iloc[:,len(B)])
BB = B.T @ B
N = len(Data)
M = len(B)
Jacobian = np.zeros(np.shape(B))
for n in range(len(B)):
for m in range(len(B)):
result = 0
for c in range(N):
som = 0
for i in range(M):
som += X[c,m]*B[n,i]*X[c,i]
if (1 - np.exp(-X[c].T @ BB @ X[c]) > 0):
result += -2*Y[c]*som + (1-Y[c])*np.exp(-X[c].T @ BB @ X[c])*(2*som)/(1 - np.exp(-X[c].T @ BB @ X[c]))
Jacobian[n,m] = result
return convert_matrix2line(Jacobian)
def Jacf(params, Data):
return -dlogLB(params, Data)