I'm trying to log my ML trials with mlflow.keras.autolog
and mlflow.log_param
simultaneously (mlflow v 1.22.0
). However, the only things that are recorded are autolog
's products, but not those of log_param
.
experiment = mlf_client.get_experiment_by_name(experiment_name)
with mlflow.start_run(experiment_id=experiment.experiment_id):
mlflow.keras.autolog(log_input_examples=True)
mlflow.log_param('batch_size', self.batch_size)
mlflow.log_param('training_set_size', len(kwargs['training_ID_list']))
mlflow.log_param('testing_set_size', len(kwargs['testing_ID_list']))
history = self.train_NN_model(**kwargs)
I know I can use log_param
with log_model
to save the model itself, but then I lose some useful stuff that autolog
can record for me automatically (e.g., model summary).
Is it possible to use autolog
with custom parameters for logging?