I want to simulate a free fall and a collision with the ground (for example a bouncing ball). The object will fall in a vacuum - an air resistance can be omitted. A collision with the ground should causes some energy loss so finally the object will stop moving. I use JOGL to render a point which is my falling object. A gravity is constant (-9.8 m/s^2).
I found an euler method to calculate a new position of the point:
deltaTime = currentTime - previousTime;
vel += acc * deltaTime;
pos += vel * deltaTime;
but I'm doing something wrong. The point bounces a few times and then it's moving down (very slow).
Here is a pseudocode (initial pos = (0.0f, 2.0f, 0.0f), initial vel(0.0f, 0.0f, 0.0f), gravity = -9.8f):
display()
{
calculateDeltaTime();
velocity.y += gravity * deltaTime;
pos.y += velocity.y * deltaTime;
if(pos.y < -2.0f) //a collision with the ground
{
velocity.y = velocity.y * energyLoss * -1.0f;
}
}
What is the best way to achieve a realistic effect ? How the euler method refer to the constant acceleration equations ?