For the record, it seems unlikely that you really want/need this, provided that the general problem is undecidable (as Théo explained). However, for the sake of answering the question:
If you know for sure that your input list has exactly one occurrence of the function f
you are looking for (where functions are identified by their pointwise equality), then all other functions of the list disagree with f
at some point. In other words, for each of the other functions, there exists a k : nat
such that g k ≠ f k
.
Since nat
is enumerable, that integer comparison is decidable, and that the list is finite, there is a terminating algorithm to solve this problem. In imperative pseudo-code:
input: a function f : nat → nat
input: a list of functions [ g[0] ; g[1] ; … ; g[n−1] ] : list (nat → nat)
start:
candidates := { 0 ; 1 ; … ; n−1 } (set of cardinal n)
k := 0
while true do:
if card candidates < 2 then:
return the only candidate
for all i in candidates do:
if f k ≠ g[i] k then:
candidates := candidates \ { i }
k := k+1
end
If the list has several occurrences of f
, then the algorithm never terminates (the occurrences remain candidates forever). If there is zero or one occurrence, the algorithm terminates but there is no way of deciding whether the remaining candidate is totally equal to f
.
Hence the assumption stated above is necessary for termination and correction. That’s likely not easy to implement in Coq, especially since you have to convince Coq of the termination. Good luck if that’s really what you want. ;-)