1

This is my first time trying to plot an RDA in R. My datas for the RDA are two matrix; one with environmental conditions such as pH, temperature, etc. and the other with different species (relative frequencies of every species at each station). These data were taken at different stations. My response variable is the species and my explanatory variable is the environmental conditions.

> chalut_large_mat #Species found at the stations
     Actiniaria sp.  Chionoecetes opilio Lycodes sp. Meganyctiphanes norvegica Pandalus borealis
EM14      0.04347826           0.1304348  0.04347826                0.04347826         0.6521739
EM16      0.00000000           0.0629275  0.00000000                0.00000000         0.8440492
BIC3      0.00000000           0.0000000  0.00000000                0.00000000         0.8431373
EM17      0.00000000           0.0000000  0.00000000                0.00000000         0.0000000
EM12      0.00000000           0.4076087  0.00000000                0.00000000         0.0000000
     Pseudopleuronectes americanus Aspidophoroides monopterygius  Crevette sp. Clymenella torquata Eteone sp.
EM14                    0.08695652                     0.00000000   0.00000000           0.0000000 0.00000000
EM16                    0.00000000                     0.03146375   0.00000000           0.0000000 0.00000000
BIC3                    0.00000000                     0.00000000   0.05882353           0.0000000 0.00000000
EM17                    0.00000000                     0.00000000   0.00000000           0.2142857 0.07142857
EM12                    0.04347826                     0.00000000   0.00000000           0.0000000 0.00000000
     Mya arenaria Nuculana sp. Gammarus sp. Echinoidea   Zoarcidae Sclerocrangon boreasÿ Pandalus montagui
EM14    0.0000000   0.00000000   0.00000000  0.00000000 0.00000000            0.00000000         0.0000000
EM16    0.0000000   0.00000000   0.00000000  0.00000000 0.00000000            0.00000000         0.0000000
BIC3    0.0000000   0.00000000   0.00000000  0.00000000 0.00000000            0.00000000         0.0000000
EM17    0.5714286   0.07142857   0.07142857  0.00000000 0.00000000            0.00000000         0.0000000
EM12    0.0000000   0.00000000   0.00000000  0.06521739 0.05978261            0.03804348         0.1521739
     Sebastes sp.
EM14    0.0000000
EM16    0.0000000
BIC3    0.0000000
EM17    0.0000000
EM12    0.1684783
> chimie_large_mat #environmental conditions measured at every station
     prof groupe      lat      long   temp     sal    pH      MPS       chla       phaeo oxygen_abs        DO
BIC3  293      1 48.61018 -68.95022 5.9218 34.4832 7.885 11.29020 0.08353328 0.010738708     0.7734  53.06538
EM12  115      3 48.81703 -68.75740 3.3890 33.4904 7.986 15.95486 0.06623374 0.012311763     1.3739 135.49446
EM14  327      3 48.70100 -68.65102 6.2420 34.7703 7.919 15.72575 0.04919374 0.013765077     0.7829  49.63710
EM16   72      4 48.58262 -68.53828 7.4710 27.6365 8.197  9.96400 0.25115478 0.009154732     2.0803 284.46747
EM17   22      4 48.54998 -68.56083 6.6148 28.1667 8.207 11.71675 0.59121391 0.004247401     2.1196 270.89014
          DIC       AT phosphate   NO2.NO3   pCO2
BIC3 2541.000 2275.107  2.481480 25.163658 1023.3
EM12 2380.742 2222.264  1.809933 18.547943  758.3
EM14 2494.135 2255.000  2.523323 24.916785  924.3
EM16 2297.125 2139.078  1.113962  7.995123  461.3
EM17 2221.665 2067.097  1.129026 10.197057  432.8
> ####ACR####
> acr<-rda(chalut_large_mat,chimie_large_mat,scale=FALSE)
> summary(acr)

Call:
rda(X = chalut_large_mat, Y = chimie_large_mat, scale = FALSE) 

Partitioning of variance:
              Inertia Proportion
Total          0.3105          1
Constrained    0.3105          1
Unconstrained  0.0000          0

Eigenvalues, and their contribution to the variance 

Importance of components:
                        RDA1    RDA2     RDA3      RDA4
Eigenvalue            0.2307 0.07607 0.002925 0.0008345
Proportion Explained  0.7429 0.24499 0.009419 0.0026876
Cumulative Proportion 0.7429 0.98789 0.997312 1.0000000

Accumulated constrained eigenvalues
Importance of components:
                        RDA1    RDA2     RDA3      RDA4
Eigenvalue            0.2307 0.07607 0.002925 0.0008345
Proportion Explained  0.7429 0.24499 0.009419 0.0026876
Cumulative Proportion 0.7429 0.98789 0.997312 1.0000000

Scaling 2 for species and site scores
* Species are scaled proportional to eigenvalues
* Sites are unscaled: weighted dispersion equal on all dimensions
* General scaling constant of scores:  1.055675 


Species scores

                                     RDA1      RDA2       RDA3       RDA4
Actiniaria sp.                 -0.0094665  0.003555  0.0350172 -0.0053410
Chionoecetes opilio             0.1196407  0.296348  0.0175344  0.0253551
Lycodes sp.                    -0.0094665  0.003555  0.0350172 -0.0053410
Meganyctiphanes norvegica      -0.0094665  0.003555  0.0350172 -0.0053410
Pandalus borealis              -0.8158654 -0.104382 -0.0029265  0.0111654
Pseudopleuronectes americanus  -0.0004895  0.038002  0.0621369 -0.0110708
Aspidophoroides monopterygius  -0.0124340 -0.001963 -0.0067394  0.0225114
Crevette sp.                   -0.0237428 -0.007329 -0.0242368 -0.0357637
Clymenella torquata             0.1269299 -0.129706  0.0005282  0.0052062
Eteone sp.                      0.0423100 -0.043235  0.0001761  0.0017354
Mya arenaria                    0.3384797 -0.345882  0.0014086  0.0138833
Nuculana sp.                    0.0423100 -0.043235  0.0001761  0.0017354
Gammarus sp.                    0.0423100 -0.043235  0.0001761  0.0017354
Echinoidea                      0.0276653  0.046338 -0.0118461 -0.0005831
Zoarcidae                       0.0253599  0.042476 -0.0108590 -0.0005345
Sclerocrangon boreasÿ           0.0161381  0.027030 -0.0069102 -0.0003402
Pandalus montagui               0.0645524  0.108121 -0.0276410 -0.0013607
Sebastes sp.                    0.0714687  0.119705 -0.0306025 -0.0015064


Site scores (weighted sums of species scores)

        RDA1     RDA2      RDA3      RDA4
EM14 -0.2426  0.09112  0.897572 -0.136903
EM16 -0.4404 -0.06954 -0.238709  0.797357
BIC3 -0.4498 -0.13884 -0.459181 -0.677566
EM17  0.6601 -0.67457  0.002747  0.027076
EM12  0.4728  0.79183 -0.202429 -0.009965


Site constraints (linear combinations of constraining variables)

        RDA1     RDA2      RDA3      RDA4
EM14 -0.2426  0.09112  0.897572 -0.136903
EM16 -0.4404 -0.06954 -0.238709  0.797357
BIC3 -0.4498 -0.13884 -0.459181 -0.677566
EM17  0.6601 -0.67457  0.002747  0.027076
EM12  0.4728  0.79183 -0.202429 -0.009965


Biplot scores for constraining variables

          RDA1     RDA2    RDA3    RDA4
prof   -0.7333 -0.20114  0.2821 -0.5850
groupe  0.6258 -0.02513 -0.7714  0.1125
lat    -0.7837 -0.24602 -0.3465  0.4530
long    0.6651 -0.06890 -0.7343 -0.1173

I tried biplot but I get this error message and I know that this is not the way I want to represent my data.

>biplot(acr, scaling = 1)
Error in biplot.rda(acr, scaling = 1, main = "RDA – scaling 1") : 
  'biplot.rda' not suitable for models with constraints

For the plot, I want both my stations and my species as points and all my environmental conditions as vectors. I know I can do this with ggplot but I have no idea how. I tried but I only get my stations as points and my species as vector. I don't know how to put the environmental conditions as vector. This is the code I did to create my plot but it is obviously wrong. Thank you for your help!

acpl_summ<-summary(acr,scaling=1) 
acpl_sites<-acpl_summ$sites[,1:2]
head(acpl_sites)
sites<-as_tibble(acpl_sites)%>%
  mutate(station=rownames(acpl_sites))
sites

##Vector##
acpl_sp<-acpl_summ$species[,1:2]
acpl_sp
especes<-as_tibble(acpl_sp)%>%
  mutate(espece=rownames(acpl_sp))
especes

##Plot##
acp_graph_sites<-ggplot(sites)+
  geom_text(aes(x=RDA1,y=RDA2,label=station))+
  xlab('RDA 1 (xx%)')+
  ylab('RDA 2(xx%)')+
  geom_hline(yintercept=0,linetype='dotted')+
  geom_vline(xintercept=0,linetype='dotted')+
  theme_bw()+
  theme(panel.grid.major=element_blank(),
        panel.grid.minor=element_blank(),
        legend.position='top',
        legend.text=element_text(size=7))+
  scale_colour_discrete(name=NULL)
acp_graph_sites

exp_sp<-4 #expansion factor
acp_graph_sites_sp<-acp_graph_sites+
  geom_text(data=especes,aes(x=RDA1/exp_sp, 
                             y=RDA2/exp_sp,
                             label=espece))+
  geom_segment(data=especes,
               aes(x=0,y=0,xend=RDA1/exp_sp,yend=RDA2/exp_sp))
acp_graph_sites_sp

the plot it gives my with the wrong variable as vector

0 Answers0