My main thread creates 8 worker threads (on a machine with a 4 core, 8 thread CPU), and then waits for them to complete with pthread_join(). The threads all exit successfully, and the pthread_join() successfully completes. However, I log the times that the threads exit and the time that pthread_join() completes for the last thread; the threads all exit essentially simultaneously (not surprising -- they are servicing a queue of work to be done), and the pthread_join() sometimes takes quite a long time to complete -- I have seen times in excess of 15 minutes after the last worker thread has exited!
More information: The worker threads are all set at the highest allowable round-robin scheduling priority (SCHED_RR); I have tried setting the main thread (waiting on the pthread_join()s) to the same thing and have also tried setting it to the highest SCHED_FIFO priority (where so far I have only seen it take as long as 27 seconds to complete; more testing is needed). My test is very CPU and memory intensive and takes about 90 -- 100 minutes to complete; during that time it is generally using all 8 threads at close to 100% capacity, and fairly quickly gets to where it is using about 90% of the 256 GB of RAM. This is running on a Linux (Fedora) OS at run level 3 (so no graphics or Window Manager -- essentially just a terminal -- because at the usual run level 5, a process using that much memory gets killed by the system).
An earlier version that took closer to 4 hours to complete (I have since made some performance improvements...) and in which I did not bother explicitly setting the priority of the main thread once took over an hour and 20 minutes for the pthread_join() to complete. I mention it because I don't really think that the main thread priority should be much of an issue -- there is essentially nothing else happening on the machine, it is not even on the network.
As I mentioned, all the threads complete with EXIT_SUCCESS. And in lighter weight tests, where the processing is over in seconds, I see no such delay. And so I am left suspecting that this is a scheduler issue. I know very little about the scheduler, but informally the impression I have is that here is this thread that has been waiting on a pthread_join() for well over an hour; perhaps the scheduler eventually shuffles it off to a queue of "very unlikely to require any processing time" tasks, and only checks it rarely.
Okay, eventually it completes. But ultimately, to get my work done, I have to run about 1000 of these, and some are likely to take a great deal longer than the 90 minutes or so that the case I have been testing takes. So I have to worry that the pthread_join() in those cases might delay even longer, and with 1000 iterations, those delays are going to add up to real time...
Thanks in advance for any suggestions.
In response to Nate's excellent questions and suggestions:
I have used
top
to spy on the process when it is in this state; all I can report is that it is using minimal CPU (maybe an occasional 2%, compared to the usual 700 - 800% thattop
reports for 8 threads running flat out, modulo some contention for locked resources). I am aware thattop
has all kinds of options I haven't investigated, and will look into how to run it to display information about the state of the main thread. (I see: I can use the -H option, and look in the S column... will do.) It is definitely not a matter of all the memory being swapped out -- my code is very careful to stay below the limit of physical memory, and does some disk I/O of its own to save and restore information that can't fit in memory. As a result little to no virtual memory is in use at any time.I don't like my theory about the scheduler either... It's just the best I have been able to come up with so far...
As far as how I am determining when things happen: The exiting code does:
time_t now; time(&now); printf("Thread exiting, %s", ctime(&now)); pthread_exit(EXIT_SUCCESS);
and then the main thread does:
for (int i = 0; i < WORKER_THREADS; i++)
{
pthread_join(threads[i], NULL);
}
time(&now);
printf("Last worker thread has exited, %s", ctime(&now));
I like the idea of printing something each time pthread_join() returns, to see if we're waiting for the first thread to complete, the last thread to complete, or one in the middle, and will make that change.
A couple of other potentially relevant facts that have occurred to me since my original posting: I am using the GMP (GNU Multiprecision Arithmetic) library, which I can't really imagine matters; and I am also using a 3rd party (open source) library to create "canonical graphs," and that library, in order to be used in a multithreaded environment, does use some thread_local
storage. I will have to dig into the particulars; still, it doesn't seem like cleaning that up should take any appreciable amount of time, especially without also using an appreciable amount of CPU.