I'm trying to fit and forecast TSLM models with different time-t predictors added alongside the trend... for reasons I don't understand, several of the models yield identical predictions even though the the input test data appears different, and the coefficients in the models themselves appear different. Almost certainly this an error on my part.. let me know what's going wrong!
suppressPackageStartupMessages({
library(tidyverse)
library(tsibble)
library(fable)
library(feasts)
})
proj_tract <- read_csv("path_to_reprexdata")
proj_tract <- as_tsibble(proj_tract, key = tractid, index = year)
train <- proj_tract %>%
filter(year < 2019)
test <- proj_tract %>%
filter(year >= 2019)
fit <- train %>%
model(
trend_only = TSLM(log(chh) ~ trend()),
trend_w_dar = TSLM(log(chh) ~ trend() + log(ig_count_imptd)),
trend_w_da1 = TSLM(log(chh) ~ trend() + log(prd_1)),
trend_w_da2 = TSLM(log(chh) ~ trend() + log(prd_2)),
trend_w_da3 = TSLM(log(chh) ~ trend() + log(prd_3)),
trend_w_da4 = TSLM(log(chh) ~ trend() + log(prd_4)),
trend_w_da5 = TSLM(log(chh) ~ trend() + log(prd_glmnet))
)
fc <- forecast(
fit,
new_data = test
) %>%
hilo(.95)
res <- fc %>%
as_tibble() %>%
rename("proj" = ".mean", "model" = ".model") %>%
select(model, proj, lchh) %>%
pivot_wider(names_from = model, values_from = proj)
head(res)
A subset of these models yield identical predictions -- help me understand why!