1

I am trying to run a Glue ETL job which has a Glue Catalog table which has its data in S3, as input. I am getting the following error when running the job. The error seems to say that, it is unable to connect to the Spark instance but I am not sure as to which configurations should be changed to fix this issue. I tried with a S3 bucket(not using Data Catalog tables) as input and the job does go through fine.

2021-11-09 03:09:26,992 ERROR [main] glue.ProcessLauncher (Logging.scala:logError(91)): Exception in User Class
java.lang.reflect.UndeclaredThrowableException
    at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1862)
    at org.apache.spark.deploy.SparkHadoopUtil.runAsSparkUser(SparkHadoopUtil.scala:64)
    at org.apache.spark.executor.CoarseGrainedExecutorBackend$.run(CoarseGrainedExecutorBackend.scala:188)
    at org.apache.spark.executor.CoarseGrainedExecutorBackend$.main(CoarseGrainedExecutorBackend.scala:281)
    at org.apache.spark.executor.CoarseGrainedExecutorBackendPlugin$class.launch(CoarseGrainedExecutorBackendWrapper.scala:10)
    at org.apache.spark.executor.CoarseGrainedExecutorBackendWrapper$$anon$1.launch(CoarseGrainedExecutorBackendWrapper.scala:15)
    at org.apache.spark.executor.CoarseGrainedExecutorBackendWrapper.launch(CoarseGrainedExecutorBackendWrapper.scala:19)
    at org.apache.spark.executor.CoarseGrainedExecutorBackendWrapper$.main(CoarseGrainedExecutorBackendWrapper.scala:5)
    at org.apache.spark.executor.CoarseGrainedExecutorBackendWrapper.main(CoarseGrainedExecutorBackendWrapper.scala)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:498)
    at com.amazonaws.services.glue.SparkProcessLauncherPlugin$class.invoke(ProcessLauncher.scala:48)
    at com.amazonaws.services.glue.ProcessLauncher$$anon$1.invoke(ProcessLauncher.scala:78)
    at com.amazonaws.services.glue.ProcessLauncher.launch(ProcessLauncher.scala:133)
    at com.amazonaws.services.glue.ProcessLauncher$.main(ProcessLauncher.scala:30)
    at com.amazonaws.services.glue.ProcessLauncher.main(ProcessLauncher.scala)
Caused by: org.apache.spark.SparkException: Exception thrown in awaitResult: 
    at org.apache.spark.util.ThreadUtils$.awaitResult(ThreadUtils.scala:226)
    at org.apache.spark.rpc.RpcTimeout.awaitResult(RpcTimeout.scala:75)
    at org.apache.spark.rpc.RpcEnv.setupEndpointRefByURI(RpcEnv.scala:101)
    at org.apache.spark.executor.CoarseGrainedExecutorBackend$$anonfun$run$1.apply$mcV$sp(CoarseGrainedExecutorBackend.scala:201)
    at org.apache.spark.deploy.SparkHadoopUtil$$anon$2.run(SparkHadoopUtil.scala:65)
    at org.apache.spark.deploy.SparkHadoopUtil$$anon$2.run(SparkHadoopUtil.scala:64)
    at java.security.AccessController.doPrivileged(Native Method)
    at javax.security.auth.Subject.doAs(Subject.java:422)
    at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1844)
    ... 17 more
Caused by: java.io.IOException: Failed to connect to /172.35.144.51:41533
    at org.apache.spark.network.client.TransportClientFactory.createClient(TransportClientFactory.java:245)
    at org.apache.spark.network.client.TransportClientFactory.createClient(TransportClientFactory.java:187)
    at org.apache.spark.rpc.netty.NettyRpcEnv.createClient(NettyRpcEnv.scala:198)
    at org.apache.spark.rpc.netty.Outbox$$anon$1.call(Outbox.scala:194)
    at org.apache.spark.rpc.netty.Outbox$$anon$1.call(Outbox.scala:190)
    at java.util.concurrent.FutureTask.run(FutureTask.java:266)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    at java.lang.Thread.run(Thread.java:748)
Caused by: io.netty.channel.AbstractChannel$AnnotatedConnectException: Connection refused: /172.35.144.51:41533
    at sun.nio.ch.SocketChannelImpl.checkConnect(Native Method)
    at sun.nio.ch.SocketChannelImpl.finishConnect(SocketChannelImpl.java:716)
    at io.netty.channel.socket.nio.NioSocketChannel.doFinishConnect(NioSocketChannel.java:323)
    at io.netty.channel.nio.AbstractNioChannel$AbstractNioUnsafe.finishConnect(AbstractNioChannel.java:340)
    at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:633)
    at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:580)
    at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:497)
    at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:459)
    at io.netty.util.concurrent.SingleThreadEventExecutor$5.run(SingleThreadEventExecutor.java:858)
    at io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run(DefaultThreadFactory.java:138)
    ... 1 more
Caused by: java.net.ConnectException: Connection refused
    ... 11 more

ETL Script

import sys
from awsglue.transforms import *
from awsglue.utils import getResolvedOptions
from pyspark.context import SparkContext
from awsglue.context import GlueContext
from awsglue.job import Job
args = getResolvedOptions(sys.argv, ["JOB_NAME"])
sc = SparkContext()
glueContext = GlueContext(sc)
spark = glueContext.spark_session
job = Job(glueContext)
job.init(args["JOB_NAME"], args)

# Script generated for node Data Catalog table
DataCatalogtable_node1 = glueContext.create_dynamic_frame.from_catalog(
    database="<PLACEHOLDERFORCATALOGDB>",
    table_name="<PLACEHOLDERFORCATALOGTABLE>",
    transformation_ctx="DataCatalogtable_node1",
)

# Script generated for node ApplyMapping
ApplyMapping_node2 = ApplyMapping.apply(
    frame=DataCatalogtable_node1,
    mappings=[
        ("id", "long", "id", "long"),
        ("country", "string", "country", "string"),
        ("state", "string", "state", "string"),
        ("city", "string", "city", "string"),
        ("amount", "double", "amount", "double"),
    ],
    transformation_ctx="ApplyMapping_node2",
)
# Script generated for node S3 bucket
S3bucket_node3 = glueContext.write_dynamic_frame.from_options(
    frame=ApplyMapping_node2,
    connection_type="s3",
    format="csv",
    connection_options={"path": "s3://<PLACEHOLDERFORS3BUCKET>/", "partitionKeys": []},
    transformation_ctx="S3bucket_node3",
)
job.commit()
Van
  • 35
  • 7

0 Answers0