I am creating my custom layers tf.keras model using mobile net pretrained layer. Model training is running fine but when saving the best picked model it is giving an error. Below is the snippet of the code that I used
pretrained_model = tf.keras.applications.MobileNetV2(
weights='imagenet',
include_top=False,
input_shape=[*IMAGE_SIZE, IMG_CHANNELS])
pretrained_model.trainable = True #fine tuning
model = tf.keras.Sequential([
tf.keras.layers.Lambda(# Convert image from int[0, 255] to the format expect by this model
lambda data:tf.keras.applications.mobilenet.preprocess_input(
tf.cast(data, tf.float32)), input_shape=[*IMAGE_SIZE, 3]),
pretrained_model,
tf.keras.layers.GlobalAveragePooling2D()])
model.add(tf.keras.layers.Dense(64, name='object_dense',kernel_regularizer=tf.keras.regularizers.l2(l2=0.001)))
model.add(tf.keras.layers.BatchNormalization(scale=False, center = False))
model.add(tf.keras.layers.Activation('relu', name='relu_dense_64'))
model.add(tf.keras.layers.Dropout(rate=0.2, name='dropout_dense_64'))
model.add(tf.keras.layers.Dense(32, name='object_dense_2',kernel_regularizer=tf.keras.regularizers.l2(l2=0.01)))
model.add(tf.keras.layers.BatchNormalization(scale=False, center = False))
model.add(tf.keras.layers.Activation('relu', name='relu_dense_32'))
model.add(tf.keras.layers.Dropout(rate=0.2, name='dropout_dense_32'))
model.add(tf.keras.layers.Dense(16, name='object_dense_16', kernel_regularizer=tf.keras.regularizers.l2(l2=0.01)))
model.add(tf.keras.layers.Dense(len(CLASS_NAMES), activation='softmax', name='object_prob'))
m1 = tf.keras.metrics.CategoricalAccuracy()
m2 = tf.keras.metrics.Recall()
m3 = tf.keras.metrics.Precision()
optimizers = [
tfa.optimizers.AdamW(learning_rate=lr * .001 , weight_decay=wd),
tfa.optimizers.AdamW(learning_rate=lr, weight_decay=wd)
]
optimizers_and_layers = [(optimizers[0], model.layers[0]), (optimizers[1], model.layers[1:])]
optimizer = tfa.optimizers.MultiOptimizer(optimizers_and_layers)
model.compile(
optimizer= optimizer,
loss = 'categorical_crossentropy',
metrics=[m1, m2, m3],
)
checkpoint_path = os.getcwd() + os.sep + 'keras_model'
checkpoint_cb = tf.keras.callbacks.ModelCheckpoint(filepath=os.path.join(checkpoint_path),
monitor = 'categorical_accuracy',
save_best_only=True,
save_weights_only=True)
history = model.fit(train_data, validation_data=test_data, epochs=N_EPOCHS, callbacks=[checkpoint_cb])
At tf.keras.callbacks.ModelCheckpoint is giving me an error
TypeError: Unable to serialize 1.0000000656873453e-05 to JSON. Unrecognized type <class 'tensorflow.python.framework.ops.EagerTensor'>.
Below is the link to the Google Colab notebook in case you want to replicate the issue
https://colab.research.google.com/drive/1wQbUFfhtDaB5Xta574UkAXJtthui7Bt9?usp=sharing