From the graph theory we know that:
- if the quantity of vertices of a graph is more than the quantity of edges, therefore, cycles (closed contours) are absent.
- if the quantity of vertices of a graph is equal to the quantity of edges, therefore, a graph has only one cycle.
- if the quantity of vertices of a graph is less than the quantity of edges, therefore, a graph has more than one closed contour.

I offer the algorithm Depth first search, that finds a simple cycles in the graph and prints them:
#include <iostream>
#include <vector>
#include <set>
#include <algorithm>
using namespace std;
const int maximumSize=40;
vector<vector<int>> visited(maximumSize, vector<int>(maximumSize, 0));
vector<int> graph[maximumSize], closedContour, temporary;
int vertices, edges;
set<vector<int>> contours;
void showContentSetVector(set<vector<int>> input)
{
for(auto iterator=input.begin(); iterator!=input.end(); ++iterator)
{
for(auto item : *iterator)
{
cout<<item<<", ";
}
cout<<endl;
}
return;
}
bool compare(int i,int j)
{
return (i<j);
}
void createGraph()
{
cin>>vertices>>edges;
int vertex0, vertex1;
for(int i=1; i<=edges; ++i)
{
cin>>vertex0>>vertex1;
graph[vertex0].push_back(vertex1);
graph[vertex1].push_back(vertex0);
}
return;
}
void depthFirstSearch(int initial, int current, int previous)
{
if(visited[initial][current]==1)
{
for(int i=0; i<temporary.size(); ++i)
{
if(temporary[i]==current)
{
for(int j=i; j<temporary.size(); ++j)
{
closedContour.push_back(temporary[j]);
}
}
}
sort(closedContour.begin(), closedContour.end(), compare);
contours.insert(closedContour);
closedContour.clear();
return;
}
visited[initial][current]=1;
temporary.push_back(current);
for(int next : graph[current])
{
if(next==previous)
{
continue;
}
depthFirstSearch(initial, next, current);
}
temporary.pop_back();
return;
}
void solve()
{
createGraph();
for(int vertex=1; vertex<=vertices; ++vertex)
{
temporary.clear();
depthFirstSearch(vertex, vertex, -1);
}
cout<<"contours <- ";
showContentSetVector(contours);
return;
}
int main()
{
solve();
return 0;
}
Here is the result:
contours <-
1, 2, 3, 4,
6, 7, 8,