I'd like to do a hyperparameter-tuning on a Keras model with Keras tuner.
import tensorflow as tf
from tensorflow import keras
import keras_tuner as kt
def model_builder(hp):
model = keras.Sequential()
model.add(keras.layers.Flatten(input_shape=(28, 28)))
hp_units = hp.Int('units', min_value=32, max_value=512, step=32)
model.add(keras.layers.Dense(units=hp_units, activation='relu'))
model.add(keras.layers.Dense(10))
hp_learning_rate = hp.Choice('learning_rate', values=[1e-2, 1e-3, 1e-4])
model.compile(optimizer=keras.optimizers.Adam(learning_rate=hp_learning_rate),
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
return model
tuner = kt.Hyperband(model_builder,
objective='val_accuracy',
max_epochs=10,
factor=3)
tuner.search(train_X, train_y, epochs=50)
So far, so good. However, I additionally want to define some model parameters (like input image dimensions) as input parameters for model_builder
, I'm clueless, how to done:
def model_builder(hp, img_dim1, img_dim2):
model = keras.Sequential()
model.add(keras.layers.Flatten(input_shape=(img_dim1, img_dim2)))
...
and
tuner = kt.Hyperband(model_builder(img_dim1, img_dim2),
objective='val_accuracy',
max_epochs=10,
factor=3)
seemingly doesn't work. How to feed img_dim1, img_dim2
to the model beyond hp
?