1

My network architecture is the combination of 7 layers of CNN and 2 layers of BiLSTM, when i trained my model it shows overfitting, one of the solution to deal with this problem is Dropout in the architecture. How we can add dropout in this network architecture.

# input with shape of height=42 and width=600
inputs = Input(shape=(42,600,1))

# convolution layer with kernel size (3,3)
conv_1 = Conv2D(64, (3,3), activation = 'relu', padding='same')(inputs)
# poolig layer with kernel size (2,2)
pool_1 = MaxPool2D(pool_size=(2, 2), strides=2)(conv_1)

conv_2 = Conv2D(128, (3,3), activation = 'relu', padding='same')(pool_1)
pool_2 = MaxPool2D(pool_size=(2, 2), strides=2)(conv_2)

conv_3 = Conv2D(256, (3,3), activation = 'relu', padding='same')(pool_2)

conv_4 = Conv2D(256, (3,3), activation = 'relu', padding='same')(conv_3)
# poolig layer with kernel size (2,1)
pool_4 = MaxPool2D(pool_size=(2, 1))(conv_4)

conv_5 = Conv2D(512, (3,3), activation = 'relu', padding='same')(pool_4)
# Batch normalization layer
batch_norm_5 = BatchNormalization()(conv_5)

conv_6 = Conv2D(512, (3,3), activation = 'relu', padding='same')(batch_norm_5)
batch_norm_6 = BatchNormalization()(conv_6)
pool_6 = MaxPool2D(pool_size=(2, 1))(batch_norm_6)

conv_7 = Conv2D(512, (2,2), activation = 'relu')(pool_6)

squeezed = Lambda(lambda x: K.squeeze(x, 1))(conv_7)

# bidirectional LSTM layers with units=128
blstm_1 = Bidirectional(LSTM(128, return_sequences=True, dropout = 0.5))(squeezed)
blstm_2 = Bidirectional(LSTM(128, return_sequences=True, dropout = 0.5))(blstm_1)

outputs = Dense(len(char_list)+1, activation = 'softmax')(blstm_2)

# model to be used at test time
act_model = Model(inputs, outputs)

The accuracy and loss graph of trained model is: enter image description here

maryam mehboob
  • 338
  • 5
  • 17

0 Answers0