I'm working for quite some time on finding a numerical instance for solution of a 8 variables system of 7 very complicated inequalities plus region specification. Unfortunately I cannot produce a MWE or nothing of the sort since the inputs are really long.
My current method is Mathematica's NMinimize
routine, minimizing one of the 7 inequalities subject to every other condition as constraint -- The FindInstance
command simply quits the kernel without being able to finish running.
The NMinimize
is able to produce output, but besides being slower than would be optimal, produce results that do not obey every constraint.
The thing is that I need to be certain, for each benchmark I run, that if the output doesn't satisfy every constraint it is because such a set of real numbers doesn't exist -- which with my current method I can't be, by experience.
So: is there a foolproof, as efficient as possible, computational method for me to find a single instance of numerical solution to 7 complicated inequalities (involving trigonometric functions) of 8 variables or be sure that such a set doesn't exist?
It could be a Mathematica/python/fortran package, genetic algorithm or anything -- as long as there is clear enough documentation.