The problem is that you do not create an object of mp_hands.Hands before you want to process it. The following code solves it and prints some results. By the way, this was well documentated in the documentation link i commented before.. :
import cv2
import mediapipe as mp
mp_drawing = mp.solutions.drawing_utils
mp_hands = mp.solutions.hands
cap = cv2.VideoCapture(0, cv2.CAP_DSHOW) # i had problems before reading webcam feeds, so i added cv2.CAP_DSHOW here
while True:
success, img = cap.read()
imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# you have to create an object of mp_hands.Hands to get results
# alternatively you could do: results = mp_hands.Hands().process(imgRGB)
with mp_hands.Hands() as hands:
results = hands.process(imgRGB)
# continue loop if no results were found
if not results.multi_hand_landmarks:
continue
# print some results
for hand_landmarks in results.multi_hand_landmarks:
print(
f'Index finger tip coordinates: (',
f'{hand_landmarks.landmark[mp_hands.HandLandmark.INDEX_FINGER_TIP].x}, '
f'{hand_landmarks.landmark[mp_hands.HandLandmark.INDEX_FINGER_TIP].y})'
)
if cv2.waitKey(10) & 0xFF == ord('q'):
break
Edit:
This is more or less the same code from here:
import cv2
import mediapipe as mp
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_hands = mp.solutions.hands
# initialize webcam
cap = cv2.VideoCapture(0, cv2.CAP_DSHOW)
with mp_hands.Hands(model_complexity=0,
min_detection_confidence=0.5,
min_tracking_confidence=0.5) as hands:
while cap.isOpened():
success, image = cap.read()
if not success:
print("Ignoring empty camera frame.")
# If loading a video, use 'break' instead of 'continue'.
continue
# To improve performance, optionally mark the image as not writeable to
# pass by reference.
image.flags.writeable = False
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
results = hands.process(image)
# Draw the hand annotations on the image.
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:
mp_drawing.draw_landmarks(
image,
hand_landmarks,
mp_hands.HAND_CONNECTIONS,
mp_drawing_styles.get_default_hand_landmarks_style(),
mp_drawing_styles.get_default_hand_connections_style())
# Flip the image horizontally for a selfie-view display.
cv2.imshow('MediaPipe Hands', cv2.flip(image, 1))
if cv2.waitKey(5) & 0xFF == 27:
break
cap.release()