A simple dataLoader for image segmentation. I am having trouble with pathing the dataset from my computer file
import torchvision
import torch
import torchvision.transforms as transforms
import numpy as np
import matplotlib.pyplot as plt
import os, os.path
train_dataset_path = '/Users/NAME/Desktop/dataset/train_images' >the path
test_dataset_path = '/Users/NAME/Desktop/dataset/val_images'
mean = [0.4363, 0.4328, 0.3291]
std = [0.2129, 0.2075, 0.2038]
train_transforms = transforms.Compose([
transforms.Resize((224,224)),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(10),
transforms.ToTensor(),
transforms.Normalize(torch.Tensor(mean), torch.Tensor(std))
])
test_transforms = transforms.Compose([
transforms.Resize((224,224)),
transforms.ToTensor(),
transforms.Normalize(torch.Tensor(mean), torch.Tensor(std))
])
train_dataset = torchvision.datasets.ImageFolder(root = train_dataset_path, transform
= train_transforms)
test_dataset = torchvision.datasets.ImageFolder(root = test_dataset_path, transform =
test_transforms)
def show_transformed_images(dataset):
loader = torch.utils.data.Dataloader(dataset, batch_size = 6, shuffle=True)
batch = next(iter(loader))
images, labels = batch
grid = torchvision.utils.make_grid(images, nrow = 3)
plt.figure(figsize=(11,11))
plt.imshow(np.transpose(grid, (1,2,0)))
print('labels: ', labels)
I am getting the prompt message:
RuntimeError: Found 0 files in subfolders of:/Users/NAME/Desktop/dataset/train_images