Are you asking to see Phi and whether the model is significant relative to independent residuals?
library(nlme)
fm <- gls(Petal.Width ~ Petal.Length, data = iris,
correlation = corARMA(p=1), method= "ML")
coef(fm$modelStruct$corStruct, unconstrained = FALSE)
## Phi
## 0.2824751
fm2 <- update(fm, correlation = NULL)
anova(fm, fm2)
## Model df AIC BIC logLik Test L.Ratio p-value
## fm 1 4 -53.46889 -41.42635 30.73444
## fm2 2 3 -43.59109 -34.55919 24.79555 1 vs 2 11.8778 6e-04
As mentioned in the comments intervals
can also be used here. In this example it gives a one-row matrix whose est.
column is Phi.
intervals(fm)$corStruct
## lower est. upper
## Phi 0.1160876 0.2824751 0.4334412
## attr(,"label")
## [1] "Correlation structure:"
intervals(fm)$corStruct["Phi", "est."]
## [1] 0.2824751