I'm currently working in databricks and have a delta table with 20+ columns. I basically need to take a value from 1 column in each row, send it to an api which returns two values/columns, and then create the other 26 to merge the values back to the original delta table. So input is 28 columns and output is 28 columns. Currently my code looks like:
from pyspark.sql.types import *
from pyspark.sql import functions as F
import requests, uuid, json
from pyspark.sql import SparkSession
from pyspark.sql import DataFrame
from pyspark.sql.functions import col,lit
from functools import reduce
spark.conf.set("spark.sql.adaptive.enabled","true")
spark.conf.set("spark.databricks.adaptive.autoOptimizeShuffle.enabled", "true")
spark.sql('set spark.sql.execution.arrow.pyspark.enabled = true')
spark.conf.set("spark.databricks.optimizer.dynamicPartitionPruning","true")
spark.conf.set("spark.sql.parquet.compression.codec","gzip")
spark.conf.set("spark.sql.inMemorycolumnarStorage.compressed","true")
spark.conf.set("spark.databricks.optimizer.dynamicFilePruning","true");
output=spark.sql("select * from delta.`table`").cache()
SeriesAppend=[]
for i in output.collect():
#small mapping fix
if i['col1']=='val1':
var0='a'
elif i['col1']=='val2':
var0='b'
elif i['col1']=='val3':
var0='c'
elif i['col1']=='val4':
var0='d'
var0=set([var0])
req_var = set(['a','b','c','d'])
var_list=list(req_var-var0)
#subscription info
headers = {header}
body = [{
'text': i['col2']
}]
if len(i['col2'])<500:
request = requests.post(constructed_url, params=params, headers=headers, json=body)
response = request.json()
dumps=json.dumps(response[0])
loads = json.loads(dumps)
json_rdd = sc.parallelize(loads)
json_df = spark.read.json(json_rdd)
json_df = json_df.withColumn('col1',lit(i['col1']))
json_df = json_df.withColumn('col2',lit(i['col2']))
json_df = json_df.withColumn('col3',lit(i['col3']))
...
SeriesAppend.append(json_df)
else:
pass
Series_output=reduce(DataFrame.unionAll, SeriesAppend)
SAMPLE DF with only 3 columns:
df = spark.createDataFrame(
[
("a", "cat","owner1"), # create your data here, be consistent in the types.
("b", "dog","owner2"),
("c", "fish","owner3"),
("d", "fox","owner4"),
("e", "rat","owner5"),
],
["col1", "col2", "col3"]) # add your column names here
I really just need to write the response + other column values to a delta table, so dataframes are not necessarily required, but haven't found a faster way than the above. Right now, I can run 5 inputs, which returns 15 in 25.3 seconds without the unionAll. With the inclusion of the union, it turns into 3 minutes.
The final output would look like:
df = spark.createDataFrame(
[
("a", "cat","owner1","MI", 48003), # create your data here, be consistent in the types.
("b", "dog","owner2", "MI", 48003),
("c", "fish","owner3","MI", 48003),
("d", "fox","owner4","MI", 48003),
("e", "rat","owner5","MI", 48003),
],
["col1", "col2", "col3", "col4", "col5"]) # add your column names here
How can I make this faster in spark?