Introduction
In Kotlin I have a generic conversion extension function that simplifies conversion of this
object of type C
to an object of another type T
(declared as the receiver
) with additional conversion action
that treats receiver
as this
and also provides access to original object:
inline fun <C, T, R> C.convertTo(receiver: T, action: T.(C) -> R) = receiver.apply {
action(this@convertTo)
}
It is used like this:
val source: Source = Source()
val result = source.convertTo(Result()) {
resultValue = it.sourceValue
// and so on...
}
I noticed I often use this function on receivers
that are created by parameterless constructors and thought it would be nice to simplify it even more by creating additional version of convertTo()
that automates construction of the receiver
based on its type, like this:
inline fun <reified T, C, R> C.convertTo(action: T.(C) -> R) = with(T::class.constructors.first().call()) {
convertTo(this, action) // calling the first version of convertTo()
}
Unfortunately, I cannot call it like this:
source.convertTo<Result>() {}
because Kotlin expects three type parameters provided.
Question
Given above context, is it possible in Kotlin to create a generic function with multiple type parameters that accepts providing just one type parameter while other types are determined from the call-site?
Additional examples (by @broot)
Imagine there is no filterIsInstance()
in stdlib and we would like to implement it (or we are the developer of stdlib). Assume we have access to @Exact
as this is important for our example. It would be probably the best to declare it as:
inline fun <T, reified V : T> Iterable<@Exact T>.filterTyped(): List<V>
Now, it would be most convenient to use it like this:
val dogs = animals.filterTyped<Dog>() // compile error
Unfortunately, we have to use one of workarounds:
val dogs = animals.filterTyped<Animal, Dog>()
val dogs: List<Dog> = animals.filterTyped()
The last one isn't that bad.
Now, we would like to create a function that looks for items of a specific type and maps them:
inline fun <T, reified V : T, R> Iterable<T>.filterTypedAndMap(transform: (V) -> R): List<R>
Again, it would be nice to use it just like this:
animals.filterTypedAndMap<Dog> { it.barkingVolume } // compile error
Instead, we have this:
animals.filterTypedAndMap<Animal, Dog, Int> { it.barkingVolume }
animals.filterTypedAndMap { dog: Dog -> dog.barkingVolume }
This is still not that bad, but the example is intentionally relatively simple to make it easy to understand. In reality the function would be more complicated, would have more typed params, lambda would receive more arguments, etc. and then it would become hard to use. After receiving the error about type inference, the user would have to read the definition of the function thoroughly to understand, what is missing and where to provide explicit types.
As a side note: isn't it strange that Kotlin disallows code like this: cat is Dog
, but allows this: cats.filterIsInstance<Dog>()
? Our own filterTyped()
would not allow this. So maybe (but just maybe), filterIsInstance()
was designed like this exactly because of the problem described in this question (it uses *
instead of additional T
).
Another example, utilizing already existing reduce()
function. We have function like this:
operator fun Animal.plus(other: Animal): Animal
(Don't ask, it doesn't make sense)
Now, reducing a list of dogs seems pretty straightforward:
dogs.reduce { acc, item -> acc + item } // compile error
Unfortunately, this is not possible, because compiler does not know how to properly infer S
to Animal
. We can't easily provide S
only and even providing the return type does not help here:
val animal: Animal = dogs.reduce { acc, item -> acc + item } // compile error
We need to use some awkward workarounds:
dogs.reduce<Animal, Dog> { acc, item -> acc + item }
(dogs as List<Animal>).reduce { acc, item -> acc + item }
dogs.reduce { acc: Animal, item: Animal -> acc + item }