I have a pandas dataframe with transaction data as below:
data = [['1',5, 'cvs', '4567', '4/6/2020 12:56:40',0,0],
['1',5, 'cvs', '4567', '4/6/2020 12:56:41',1,0],
['2',6, 'walgreens', '7897', '4/9/2020 12:56:41',0,0],
['2',7, 'target', '7897', '4/10/2020 12:56:41',0,0],
['2',8, 'walmart', '9898', '4/8/2020 12:56:41',0,1],
['2',6, 'walgreens', '7897', '4/9/2020 12:56:41',1,0]]
df = pd.DataFrame(data, columns = ['ID', 'AMOUNT','STORE','CARDNUMBER','PURCHASETIME','DULICATED_FLAG','REVERSAL_FLAG'])
I want to find the duplicates here and remove the duplicates. Ideally, I would like to have a table shown as below:
ID AMOUNT STORE CARDNUMBER PURCHASETIME DUPLICATED_FLAG REVERSAL_FLAG
1 5 cvs 4567 4/6/2020 12:56:40 0 0
1 5 cvs 4567 4/6/2020 12:56:41 1 0
2 6 walgreens 7897 4/9/2020 12:56:41 0 0
2 6 walgreens 7897 4/9/2020 12:57:41 1 0