face recognition works but when I want to redirect or move pages there is an error like this
------------------------------ ERROR MESSAGE ----------------------------------------------
File "c:\Users\Home\Python\FlaskCRUDAuth\app.py", line 67, in gen_frames
return redirect(url_for('home', _external=False))
File "C:\Users\Home\anaconda3\envs\facerecognition\lib\site-packages\flask\helpers.py", line 307, in url_for
"Attempted to generate a URL without the application context being"
RuntimeError: Attempted to generate a URL without the application context being pushed. This has to be executed when application context is available.
i have tried to render_template, redirect , url_for but still error
my Code : -------------------------------- Code(app.py) --------------------------------------------
# Store this code in 'app.py' file
from flask import Flask, render_template, request, redirect, url_for, session, Response
import re
import cv2
import numpy as np
import face_recognition
# Inialisasi Flask
app = Flask(__name__)
# Face Recog
bechkam_image = face_recognition.load_image_file("Bechkam/beckham.jpg")
bechkam_face_encoding = face_recognition.face_encodings(bechkam_image)[0]
rooney_image = face_recognition.load_image_file("Rooney/rooney.jpg")
rooney_face_encoding = face_recognition.face_encodings(rooney_image)[0]
with open('label.txt') as f:
lines = f.read()
kn_fc_nm = lines.split(',')
known_face_encodings = [
bechkam_face_encoding,
rooney_face_encoding
]
known_face_names = kn_fc_nm
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True
def gen_frames():
# Inialisasi OpenCV
camera = cv2.VideoCapture(0, cv2.CAP_DSHOW)
while True:
success, frame = camera.read()
if not success:
break
else:
small_frame = cv2.resize(frame, (0,0), fx=0.25, fy=0.25)
rgb_small_frame = small_frame[:, :, ::-1]
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(
rgb_small_frame, face_locations)
face_names = []
auth = []
for face_encoding in face_encodings:
matches = face_recognition.compare_faces(
known_face_encodings, face_encoding)
name = "Unknown"
face_distances = face_recognition.face_distance(
known_face_encodings, face_encoding)
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = known_face_names[best_match_index]
face_names.append(name)
if face_names[0] in known_face_names:
print("Akses Diterima")
return redirect(url_for('home'))
elif face_names[0] == "Unknown":
print('Unknown')
else:
print('Tidak diketahui')
for (top, right, bottom, left), name in zip(face_locations, face_names):
top *= 4
right *= 4
bottom *= 4
left *= 4
cv2.rectangle(frame, (left, top),
(right, bottom), (0, 0, 255), 2)
cv2.rectangle(frame, (left, bottom - 35),
(right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6),
font, 1.0, (255, 255, 255), 1)
ret, buffer = cv2.imencode('.jpg', frame)
frame = buffer.tobytes()
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n')
@app.route('/video_feed')
def video_feed():
return Response(gen_frames(), mimetype='multipart/x-mixed-replace; boundary=frame')
@app.route('/home')
def home():
return render_template('home.html')
@app.route('/face_login')
def face_login():
return render_template('face.html')
if __name__ == '__main__':
app.run(debug=True)