I'm trying to perform a multivariate time series anomaly detection. I have training data that consists of "normal" data. I train on this data and detect anomalies on the test set that contains normal + anomalous data. My understanding is that it would be wrong to tweak the model hyperparameters based on the results from the test set.
What would the train/validate/test set look like to train and evaluate a time-series anomaly detector?