I am working on Dog-Cat classifier using Intel extension for Pytorch (Ref - https://github.com/amitrajitbose/cat-v-dog-classifier-pytorch). I want to reduce the training time for my model. How do I enable mixed precision in my code? Referred this github(https://github.com/intel/intel-extension-for-pytorch) for training my model.
Asked
Active
Viewed 131 times
2 Answers
2
Mixed precision for Intel Extension for PyTorch can be enabled using below commands,
# For Float32
model, optimizer = ipex.optimize(model, optimizer=optimizer)
# For BFloat16
model, optimizer = ipex.optimize(model, optimizer=optimizer, dtype=torch.bfloat16)
Please check out the link, https://intel.github.io/intel-extension-for-pytorch/cpu/latest/index.html and https://www.intel.com/content/www/us/en/developer/tools/oneapi/extension-for-pytorch.html to learn more about Intel Extension for PyTorch.

Ramya R
- 163
- 8
0
For enabling mixed precision from the you can directly follow the github link for intel extension for pytorch (https://github.com/intel/intel-extension-for-pytorch).
For Float32 you can
# Invoke optimize function against the model object and optimizer object
model, optimizer = ipex.optimize(model, optimizer, dtype=torch.float32)
For BFloat16
# Invoke optimize function against the model object and optimizer object with data type set to torch.bfloat16
model, optimizer = ipex.optimize(model, optimizer, dtype=torch.bfloat16)

ArunJose
- 1,999
- 1
- 10
- 33