I'm trying to learn how to work with Numpy arrays in python and working on a task where the goal is to append certain values from a square function to an np array.
To be specific, trying to append to the array in such a way that the result looks like this.
[[0, 0], [1, 1], [2, 4], [3, 9], [4, 16], [5, 25](....)
In other words kind of like using a for loop to append to a nested list kind of like this:
N = 101
def f(x):
return x**2
list1 = []
for i in range(N+1):
list1.append([i])
list1[i].append(f(i))
print(list1)
When I try to do this similarly whit Numpy arrays like below:
import numpy as np
N = 101
x_min = 1
x_max = 10
y = np.zeros(N)
x = np.linspace(x_min,x_max, N)
def f(x):
return x**2
for i in y:
np.append(y,f(x))
print(y)
I get the following output:
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0.]
... which is obviously wrong
Arrays as a datatype are quite new to me, so I would massively appreciate it if anyone could help me out.
Best regards from a rookie who is motivated to learn and welcome all help.