I am building a ML application for binary classification using ML.NET. It will have multiple ML models of varying sizes (built using different training data) which will be stored in SQL server database as Blob. Clients will send items for classification to this app in random order and based on client ID, corresponding model is to be used for classification. To classify item, model needs be read from database and then loaded into memory. Loading model in memory is taking considerable time depending on size and I don't see any way to optimize it. Hence I am planning to cache models in memory. If I cache many heavy models, it may put pressure on memory hampering performance of other processes running on server. So there is no straightforward way to limit caching. So looking for suggestions to handle this.
2 Answers
Spawn a new process
In my opinion this is the only viable option to accomplish what you're trying to do. Spawn a complete new process that communicates (via IPC?) with your "main application". You could set a memory limit using this property https://learn.microsoft.com/en-us/dotnet/api/system.gcmemoryinfo.totalavailablememorybytes?view=net-5.0 or maybe even use a 3rd-party-library (e.g. https://github.com/lowleveldesign/process-governor), that kills your process if it reaches a specific amount of RAM. Both of these approaches are quite rough and will basically kill your process.
If you have control over your side car application running, it might make sense to really monitor the RAM usage with something like this Getting a process's ram usage and gracefully stop the process.
Do it yourself solution (not recommended)
Basically there is no built in way of limiting memory usage by thread or similar.
What counts towards the memory limit?
Shared resources
Since you have a running process, you need to define what exactly counts towards the memory limit. For example if you have some static Dictionary
that is manipulated by the running thread - what did it occupy? Only the diff between the old value and the new value? The whole new value? The key and the value?
There are many more cases like this you'll have to take into consideration.
The actual measuring
You need some kind of way to count the actual memory usage. This will probably be hard/near impossible to "implement":
Reference counting needed?
If you have a hostile thread, it might spawn an infinite amount of references to one object, no new
keyword used. For each reference you'd have to count 32/64 bits.
What about built in types?
It might be "easy" to measure a byte[]
included in your own type definition, but what about built in classes? If someone initializes a string with 100MB this might be an amount you need to keep track of.
... and many more ...
As you maybe noticed with previous samples, there is no easy definition of "RAM used by a thread". This is the reason there also is no easy to get the value of it.
In my opinion it's insanely complex to do such a thing and needs a lot of definition work to do on your side. It might be feasable with lots of effort but I'm not sure if that really is what you want. Even if you manage to - what will do you about it? Only killing the thread might not clean up the ressources.
Therefore I'd really think about having a OS managed, independent, process, that you can kill whenever you feel like it.

- 1,623
- 11
- 27
How big are your models? Even large models 100meg+ load pretty quickly off of fast/SSD storage. I would consider caching them on fast drives/SSDs, because pulling off of SQL Server is going to be much slower than raw disk. See if this helps your performance.

- 3,663
- 1
- 21
- 19