below I created some fake forecast data using the tidyverse modeltime packages. I have got monthly data from 2016 and want to produce a test fc for 2020. As you can see, the data I load comes in wide format. For usage in modeltime I transform it to long data. After the modeling phase, I want to create a dataframe for the 2020 prediction values. For this purpose I need to somehow "unmelt" the data. In this process I am unfortunately losing a lot of variables. From 240 variables that I want to forecast I get only 49 in the end result. Maybe I am blind, or I do not know how to configure the modeltime functions correctly. I would really much appreciate some help. Thanks in advance!
suppressPackageStartupMessages(library(tidyverse))
suppressPackageStartupMessages(library(lubridate))
suppressPackageStartupMessages(library(tidymodels))
suppressPackageStartupMessages(library(modeltime))
## create some senseless data to produce forecasts on...
dates <- ymd("2016-01-01")+ months(0:59)
fake_values <-
c(661,678,1094,1987,3310,2105,1452,983,1107,805,675,684,436,514,668,206,19,23,365,456,1174,1760,735,366,
510,580,939,1127,2397,1514,1370,832,765,661,497,328,566,631,983,1876,2784,2928,2543,1508,1175,8,1733,
862,779,1112,1446,2407,3917,2681,2397,1246,1125,1223,1234,1239,
661,678,1094,1987,3310,2105,1452,983,1107,805,675,684,436,514,668,206,19,23,365,456,1174,1760,735,366,
510,580,939,1127,2397,1514,1370,832,765,661,497,328,566,631,983,1876,2784,2928,2543,1508,1175,8,1733,
862,779,1112,1446,2407,3917,2681,2397,1246,1125,1223,1234,1239,
661,678,1094,1987,3310,2105,1452,983,1107,805,675,684,436,514,668,206,19,23,365,456,1174,1760,735,366,
510,580,939,1127,2397,1514,1370,832,765,661,497,328,566,631,983,1876,2784,2928,2543,1508,1175,8,1733,
862,779,1112,1446,2407,3917,2681,2397,1246,1125,1223,1234,1239,
661,678,1094,1987,3310,2105,1452,983,1107,805,675,684,436,514,668,206,19,23,365,456,1174,1760,735,366,
510,580,939,1127,2397,1514,1370,832,765,661,497,328,566,631,983,1876,2784,2928,2543,1508,1175,8,1733,
862,779,1112,1446,2407,3917,2681,2397,1246,1125,1223,1234,1239)
replicate <- rep(1,60) %*% t.default(fake_values)
replicate <- as.data.frame(replicate)
df <- bind_cols(replicate, dates) %>%
rename(c(dates = ...241))
## melt it down
data <- reshape2::melt(df, id.var='dates')
## make some senseless forecast on senseless data...
split_obj <- initial_time_split(data, prop = 0.8)
model_fit_prophet <- prophet_reg() %>%
set_engine(engine = "prophet") %>%
fit(value ~ dates, data = training(split_obj))
## model table
models_tbl_prophet <- modeltime_table(model_fit_prophet)
## calibration
calibration_tbl_prophet <- models_tbl_prophet %>%
modeltime_calibrate(new_data = testing(split_obj))
## forecast
fc_prophet <- calibration_tbl_prophet %>%
modeltime_forecast(
new_data = testing(split_obj),
actual_data = data,
keep_data = TRUE
)
## "unmelt" that bastard again
fc_prophet <- fc_prophet %>% filter(str_detect(.key, "prediction"))
fc_prophet <- fc_prophet[,c(4,9,10)]
fc_prophet <- dplyr::filter(fc_prophet, .index >= "2020-01-01", .index <= "2020-12-01")
#fc_prophet <- fc_prophet %>% subset(fc_prophet, as.character(.index) >"2020-01-01" & as.character(.index)< "2020-12-01" )
fc_wide_prophet <- fc_prophet %>%
pivot_wider(names_from = variable, values_from = value)