I have a file in .npz format. Data stored in dictionary formatlooks like:
{'ffa7e85e21c9000215574a8e2c24c30d': array([[ 0.07772359, 0.04581502, -0.00930751, ..., -0.05222392,
0.02600432, 0.00974964],
[ 0.1211272 , -0.0978327 , 0.01816959, ..., -0.02647112,
-0.02802687, -0.01136648]], dtype=float32),
'ffad907e58ea5bdaf66470214c6040a9': array([[-0.00462537, 0.04290746, 0.04099328, ..., 0.00076487,
0.03863411, 0.02304979],
[ 0.03177807, -0.00942735, 0.06652466, ..., -0.01213444,
-0.05064949, -0.00099202]], dtype=float32)}
I am loading this data from file as below:
dc_data = np.load(file.npz)
val=list(zip(* dc_data.values()))
ids=list(dc_data.keys())
but as the data is very huge it took large time to load.Could anyone help to load file.npz in efficient way.