1

I want to implement a vector starting from my nose and pointing in the same direction that I'm looking. The problem is the few examples I have found without dlib using facial landmarks are all broken. I don't want to use dlib because it will not install on this machine and I don't have time to troubleshoot it any longer. All landmarks are accurate, so the problem has to lay elsewhere.

This is what I'm shooting for.

The code I have written is here. The vector line is off significantly.

import numpy as np
import mediapipe as mp

def x_element(elem):
    return elem[0]
def y_element(elem):
    return elem[1]

cap = cv2.VideoCapture(0)
pTime = 0
faceXY = []
mpDraw = mp.solutions.drawing_utils
mpFaceMesh = mp.solutions.face_mesh
faceMesh = mpFaceMesh.FaceMesh(max_num_faces=5, min_detection_confidence=.9, min_tracking_confidence=.01)
drawSpec = mpDraw.DrawingSpec(0,1,1)

success, img = cap.read()
height, width = img.shape[:2]
size = img.shape

# 3D model points.
face3Dmodel = np.array([
    (0.0, 0.0, 0.0),  # Nose tip
    (0.0, -330.0, -65.0),  # Chin
    (-225.0, 170.0, -135.0),  # Left eye left corner
    (225.0, 170.0, -135.0),  # Right eye right corne
    (-150.0, -150.0, -125.0),  # Left Mouth corner
    (150.0, -150.0, -125.0)  # Right mouth corner
],dtype=np.float64)


dist_coeffs = np.zeros((4, 1))  # Assuming no lens distortion
focal_length = size[1]
center = (size[1] / 2, size[0] / 2)
camera_matrix = np.array(
    [[focal_length, 0, center[0]],
     [0, focal_length, center[1]],
     [0, 0, 1]], dtype="double"
)

while True:
    success, img = cap.read()
    imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    results = faceMesh.process(imgRGB)
    if results.multi_face_landmarks:                                            # if faces found
        dist=[]
        for faceNum, faceLms in enumerate(results.multi_face_landmarks):                            # loop through all matches
            mpDraw.draw_landmarks(img, faceLms, landmark_drawing_spec=drawSpec) # draw every match
            faceXY = []
            for id,lm in enumerate(faceLms.landmark):                           # loop over all land marks of one face
                ih, iw, _ = img.shape
                x,y = int(lm.x*iw), int(lm.y*ih)
                # print(lm)
                faceXY.append((x, y))                                           # put all xy points in neat array
            image_points = np.array([
                faceXY[1],
                faceXY[175],
                faceXY[446],
                faceXY[226],
                faceXY[57],
                faceXY[287]
            ], dtype="double")
            for i in image_points:
                cv2.circle(img,(int(i[0]),int(i[1])),4,(255,0,0),-1)
            maxXY = max(faceXY, key=x_element)[0], max(faceXY, key=y_element)[1]
            minXY = min(faceXY, key=x_element)[0], min(faceXY, key=y_element)[1]

            xcenter = (maxXY[0] + minXY[0]) / 2
            ycenter = (maxXY[1] + minXY[1]) / 2

            dist.append((faceNum, (int(((xcenter-width/2)**2+(ycenter-height/2)**2)**.4)), maxXY, minXY))     # faceID, distance, maxXY, minXY

            print(image_points)

            (success, rotation_vector, translation_vector) = cv2.solvePnP(face3Dmodel, image_points,  camera_matrix, dist_coeffs)
            (nose_end_point2D, jacobian) = cv2.projectPoints(np.array([(0.0, 0.0, 1000.0)]), rotation_vector, translation_vector, camera_matrix, dist_coeffs)

            p1 = (int(image_points[0][0]), int(image_points[0][1]))
            p2 = (int(nose_end_point2D[0][0][0]), int(nose_end_point2D[0][0][1]))

            cv2.line(img, p1, p2, (255, 0, 0), 2)

        dist.sort(key=y_element)
        # print(dist)

        for i,faceLms in enumerate(results.multi_face_landmarks):
            if i == 0:
                cv2.rectangle(img,dist[i][2],dist[i][3],(0,255,0),2)
            else:
                cv2.rectangle(img, dist[i][2], dist[i][3], (0, 0, 255), 2)


    cv2.imshow("Image", img)
    cv2.waitKey(1)
fmw42
  • 46,825
  • 10
  • 62
  • 80

1 Answers1

0

Turns out my table for facial points were unorganized.

This is the basic face template depths, it has an order.

face3Dmodel = np.array([
    (0.0, 0.0, 0.0),            # Nose tip
    (0.0, -330.0, -65.0),       # Chin
    (-225.0, 170.0, -135.0),    # Left eye left corner
    (225.0, 170.0, -135.0),     # Right eye right corner
    (-150.0, -150.0, -125.0),   # Left Mouth corner
    (150.0, -150.0, -125.0)     # Right mouth corner
    ], dtype=np.float64)

I typed it in the wrong order originally. This is now the same order as above.

            image_points = np.array([
                faceXY[1],      # "nose"
                faceXY[152],    # "chin"
                faceXY[226],    # "left eye"
                faceXY[446],    # "right eye"
                faceXY[57],     # "left mouth"
                faceXY[287]     # "right mouth"
            ], dtype="double")