I built a custom model in .h5 from Matterport's MaskRCNN implementation. I managed to save the full model and not the weights alone using model.keras_model.save()
, and assume it worked correctly.
I need to convert this model to ONNX to inference in Unity Barracuda, and I have been hitting several errors along the way. I tried:
T1. .h5 to ONNX using this tutorial and the keras2onnx package, and I hit an error at:
model = load_model('model.h5')
Error:
ValueError: Unknown layer: BatchNorm
T2. Defining custom layers using this GitHub code:
model = keras.models.load_model(r'model.h5', custom_objects={'BatchNorm':BatchNorm,
'tf':tf, 'ProposalLayer':ProposalLayer,
'PyramidROIAlign1':PyramidROIAlign1, 'PyramidROIAlign2':PyramidROIAlign2,
'DetectionLayer':DetectionLayer}, compile=False)
Error:
ValueError: No model found in config file.
ValueError: Unknown layer: PyramidROIAlign
T3. .h5 to .pb (frozen graph) and .pbtxt, and then from .pb to ONNX using tf2onnx after finding input and output nodes (seems to be only one of each?):
assert d in name_to_node, "%s is not in graph" % d
AssertionError: output0 is not in graph
T4. .h5 to SavedModel using tf-serving code from here and then python -m tf2onnx.convert --saved-model exported_models\coco_mrcnn\3 --opset 15 --output "model.onnx"
to convert to ONNX:
ValueError: make_sure failure: variable mrcnn_detection/map/while/Enter already exists as state variable.
TLDR: Is there a way to convert my .h5 model to ONNX through any direct/indirect means? I have been stuck on this for days!
Thanks in advance.
Edit 1:
It seems that keras.models.load_model()
throws the first two errors - wondering if there is a way I can work with the .pb/.pbtxt model, or a way around without using load_model()
, or a way to solve the load_model()
issue?
Edit 2:
Code for T1: custom dataset modified from Matterport's MaskRCNN implementation