Related to Pass a list of lists of unquoted character parameters to an apply/map/pmap call.
I have a function that looks like this:
causal_med_so <- function(predictor, mediator, outcome, data, ...){
predictor <- rlang::ensym(predictor)
mediator <- rlang::ensym(mediator)
outcome <- rlang::ensym(outcome)
if(!missing(...)) {
data <- get(data, envir = .GlobalEnv) %>%
dplyr::select(!!predictor, !!mediator, !!outcome, ...) %>%
dplyr::filter(across(.cols = everything(), .fns = ~ !is.na(.)))
predictor <- enquo(predictor)
mediator <- enquo(mediator)
outcome <- enquo(outcome)
med.form <- formula(paste0(
quo_name(mediator), "~",
paste0(
quo_name(predictor), "+",
paste0(c(...), collapse = "+"),
collapse = "+"
)
))
med.fit <- eval(bquote(lm(.(med.form), data = data)))
out.form <- formula(paste0(quo_name(outcome), "~",
paste0(
quo_name(predictor), "+",
quo_name(mediator), "+",
paste0(c(...), collapse = "+"),
collapse = "+"
)))
out.fit <- eval(bquote(lm(.(out.form), data = data)))
med.out <- mediation::mediate(med.fit, out.fit,
treat = quo_name(predictor),
mediator = quo_name(mediator),
boot=T, boot.ci.type = "bca")
return(med.out)
} else {
data <- get(data, envir = .GlobalEnv) %>%
dplyr::select(!!predictor, !!mediator, !!outcome) %>%
dplyr::filter(across(.cols = everything(), .fns = ~ !is.na(.)))
med.form <- formula(paste0(quo_name(mediator), "~", quo_name(predictor)))
med.fit <- eval(bquote(lm(.(med.form), data = data)))
out.form <- formula(paste0(quo_name(outcome), "~",
quo_name(predictor), "+", quo_name(mediator)))
out.fit <- eval(bquote(lm(.(out.form), data = data)))
med.out <- mediation::mediate(med.fit, out.fit,
treat = quo_name(predictor),
mediator = quo_name(mediator),
boot=T, boot.ci.type = "bca")
return(med.out)
}
}
I create a list of parameters to feed in to the function:
param_dat <- list(
predictor = c("mpg", "cyl"),
mediator = c("drat", "disp", "wt", "cyl"),
outcome = c("qsec", "gear", "carb", "hp"),
data = c("mtcars")
) %>% cross_df
I want to adjust for certain variables in the model, so I bind_cols
additional covariates:
param_dat <- bind_cols(
list(
predictor = c("mpg", "cyl"),
mediator = c("drat", "disp", "wt", "cyl"),
outcome = c("qsec", "gear", "carb"),
data = c("mtcars")
) %>% cross_df(),
tibble(covariates = rep(list(c("vs", "hp")), 24))
)
and run the models:
out <- param_dat %>%
slice_head(n = 2)%>%
pmap(., causal_med_so)
I am getting an error:
Error in eval(predvars, data, env) : object 'vs' not found