HW / Kernel Module Perspective
A typical network adapter these days would be capable of distributing received packets across multiple hardware Rx queues thus letting the host run multiple software Rx queues bound to different CPU cores reading out packets in parallel. From a single HW/SW queue perspective, the host may poll it for new packets (see Linux NAPI), with each poll ideally yielding a batch of packets, and, alternatively, the host may still use interrupt-driven approach for Rx signalling with interrupt coalescing turned on for improved efficiency.
Existing NIC drivers in Linux kernel strive to stick with the most performant techniques, and the kernel itself should be able to leverage all of that properly.
Userland / Application Perspective
There's PACKET_MMAP interface provided by Linux kernel for improved Rx/Tx efficiency on the application side. Long story short, an application can set up a memory buffer shared between the kernel- and userspace and read out incoming packets from it, ideally in batches, or blocks, thus avoiding costly kernel-to-userspace copies and context switches so customary when using regular methods.
For added efficiency, the application may have multiple sockets bound to the NIC in separate threads / processes and demand that packet reception be load balanced across these sockets (see AF_PACKET fanout mode
description).
DPDK Perspective
Kernel bypass framework that allows an application to seize full control of a network adapter by means of a vendor-specific poll-mode driver, or PMD, effectively running in userspace as part of the application and by its very nature not needing any kernel-to-userspace copies, context switches and, most likely, locking. Multi-queue receive operation, load balancing (round robin, RSS, you name it) and more cutting edge offloads are likely to be available, too (it's vendor specific).
Summary
The short of it, given the fact that multiple network acceleration techniques already exist, one need never write their own kernel module to solve the problem in question. By the looks of it, your application, which, as you say, uses standard methods, is not aware of PACKET_MMAP
technique. So I'd be tempted to suggest looking at this one closely. DPDK approach might require that the application be effectively re-implemented from scratch, so I would first go for PACKET_MMAP
approach as a low-hanging fruit.