First time poster and fairly new to Python here. I have a collection of +1,7000 csv files with 2 columns each. The number and labels of the rows are the same in every file. The files are named with a specific format. For example:
- Species_1_OrderA_1.csv
- Species_1_OrderA_2.csv
- Species_1_OrderA_3.csv
- Species_10_OrderB_1.csv
- Species_10_OrderB_2.csv
Each imported dataframe is formatted like so:
TreeID Species_1_OrderA_2
0 Bu2_1201_1992 0
1 Bu3_1201_1998 0
2 Bu4_1201_2000 0
3 Bu5_1201_2002 0
4 Bu6_1201_2004 0
.. ... ...
307 Fi141_16101_2004 0
308 Fi142_16101_2006 0
309 Fi143_16101_2008 0
310 Fi144_16101_2010 0
311 Fi147_16101_2015 0
I would like to join the files that correspond to the same species, based on the first column. So, in the end, I would get the files Species_1_OrderA.csv and Species_10_OrderB.csv. Please note that all the species do not necessarily have the same number of files.
This is what I have tried so far.
import os
import glob
import pandas as pd
# Importing csv files from directory
path = '.'
extension = 'csv'
os.chdir(path)
files = glob.glob('*.{}'.format(extension))
# Create a dictionary to loop through each file to read its contents and create a dataframe
file_dict = {}
for file in files:
key = file
df = pd.read_csv(file)
file_dict[key] = df
# Extract the name of each dataframe, convert to a list and extract the relevant
# information (before the 3rd underscore). Compare each of these values to the next and
# if they are the same, append them to a list. This list (in my head, at least) will help
# me merge them using pandas.concat
keys_list = list(file_dict.keys())
group = ''
for line in keys_list:
type = "_".join(line.split("_")[:3])
for i in range(len(type) - 1):
if type[i] == type[i+1]:
group.append(line[keys_list])
print(group)
However, the last bit is not even working, and at this point, I am not sure this is the best way to deal with my problem. Any pointers on how to solve this will be really appreciated.
--- EDIT: This is the expected output for the files per species. Ideally, I would remove the rows that have zeros in them, but that can easily be done with awk.
TreeID,Species_1_OrderA_0,Species_1_OrderA_1,Species_1_OrderA_2
Bu2_1201_1992,0,0,0
Bu3_1201_1998,0,0,0
Bu4_1201_2000,0,0,0
Bu5_1201_2002,0,0,0
Bu6_1201_2004,0,0,0
Bu7_1201_2006,0,0,0
Bu8_1201_2008,0,0,0
Bu9_1201_2010,0,0,0
Bu10_1201_2012,0,0,0
Bu11_1201_2014,0,0,0
Bu14_1201_2016,0,0,0
Bu16_1201_2018,0,0,0
Bu18_3103_1989,0,0,0
Bu22_3103_1999,0,0,0
Bu23_3103_2001,0,0,0
Bu24_3103_2003,0,0,0
...
Fi141_16101_2004,0,0,10
Fi142_16101_2006,0,4,0
Fi143_16101_2008,0,0,0
Fi144_16101_2010,2,0,0
Fi147_16101_2015,0,7,0
``