I'd like to test for trends in proportions of animals sampled over 12 years at six different beaches so that there is a separate trend test per beach. In the data below 'thisbeach' is the number of animals sampled at that particular beach and 'notthisbeach' is the number of animals sampled at all other beaches.
dat <- data.frame(fBeach = as.factor(rep(c("B6", "B5", "B2", "B1", "B4", "B3"), each=12)),
year = rep(seq(1:12),6),
notthisbeach = c(4990, 1294, 4346, 4082, 4628, 5576, 5939, 5664, 6108, 5195, 5564, 4079, 4694, 1224, 4052,
4019, 4457, 5242, 5259, 5198, 5971, 5208, 5168, 3722, 5499, 1288, 4202, 3988, 4773, 6018,
5952, 6100, 7308, 5821, 6030, 4546, 4698, 1300, 3884, 3943, 4717, 5911, 6110, 6076, 7606,
6138, 6514, 4767, 4830, 1307, 4886, 4327, 5285, 6344, 6627, 5824, 7305, 5991, 6073, 4647,
4584, 1162, 4200, 3956, 4710, 5664, 5533, 4828, 6082, 4697, 4721, 3529),
thisbeach = c(869, 221, 768, 781, 1086, 1375, 1145, 1074, 1968, 1415, 1250, 979, 1165, 291, 1062,
844, 1257, 1709, 1825, 1540, 2105, 1402, 1646, 1336, 360, 227, 912, 875, 941, 933,
1132, 638, 768, 789, 784, 512, 1161, 215, 1230, 920, 997, 1040, 974, 662, 470,
472, 300, 291, 1029, 208, 228, 536, 429, 607, 457, 914, 771, 619, 741, 411,
1275, 353, 914, 907, 1004, 1287, 1551, 1910, 1994, 1913, 2093, 1529))
glmmTMB indicates serial correlation is present;
require(glmmTMB)
require(DHARMa)
require(multcomp)
dat.TMB <- glmmTMB(cbind(notthisbeach,thisbeach) ~ year*fBeach, family = "betabinomial", data=dat)
simres <- simulateResiduals(dat.TMB,plot=T)
res = recalculateResiduals(simres, group = dat$year)
testTemporalAutocorrelation(res, time=unique(dat$year))
Durbin-Watson test
data: simulationOutput$scaledResiduals ~ 1
DW = 0.40903, p-value = 0.0002994
alternative hypothesis: true autocorrelation is not 0
However, I can't seem to find any examples including an autocorrelation structure in a model of this type.
Does anyone have any advice please?