It's true what David said with regard to the fact that C# is a statically-typed language and that the new instance should be populated from the source the way he suggested.
However, there are work-arounds (though less performant) for that, such as reflection.
Consider you have a console app where you have defined ObjectExtensions
as follows:
public static class ObjectExtensions
{
public static TOut Map<TOut>(this object @in)
where TOut : new()
{
TOut @out = new TOut();
if (@in?.GetType() is Type tin)
{
Type tout = typeof(TOut);
foreach ((PropertyInfo pout, PropertyInfo pin) in tout.GetProperties().Join(tin.GetProperties(), pi => pi.Name, pi => pi.Name, (pout, pin) => (pout, pin)))
{
pout.SetValue(@out, pin.GetValue(@in));
}
}
return @out;
}
}
And Class1
as follows:
public class Class1
{
public string A { get; set; } = "A";
public string B { get; set; } = "B";
public string C { get; set; } = "C";
public override string ToString()
{
return $"{{A={A}, B={B}, C={C}}}";
}
}
You will be able to map your anonymous type back to its original strongly-typed class like this:
Console.WriteLine(new { A = "Anonymous A", B = "Anonymous B", C = "Anonymous C" }.Map<Class1>());
Therefore the bloc above should show the following output:
{A=Anonymous A, B=Anonymous B, C=Anonymous C}
In this case, of course, I have assumed that Class1
(Cat
in your example) must have a public parameterless constructor. That may not always be the case. There are more sophisticated scenarios of course that might involve other techniques for creating the object such as cloning or dependency injection. Just saying that the idea of yours is possible.