I am looking for an efficient way to do the following calculations on millions of arrays. For the values in each array, I want to calculate the mean of the values in the bin with most frequency as demonstrated below. Some of the arrays might contain nan values and other values are float. The loop for my actual data takes too long to finish.
import numpy as np
array = np.array([np.random.uniform(0, 10) for i in range(800,)])
# adding nan values
mask = np.random.choice([1, 0], array.shape, p=[.7, .3]).astype(bool)
array[mask] = np.nan
array = array.reshape(50, 16)
bin_values=np.linspace(0, 10, 21)
f = np.apply_along_axis(lambda a: np.histogram(a, bins=bin_values)[0], 1, array)
bin_start = np.apply_along_axis(lambda a: bin_values[np.argmax(a)], 1, f).reshape(array.shape[0], -1)
bin_end = bin_start + (abs(bin_values[1]-bin_values[0])
values = np.zeros(array.shape[0])
for i in range(array.shape[0]):
values[i] = np.nanmean(array[i][(array[i]>=bin_start[i])*(array[i]<bin_end[i])])
Also, when I run the above code I get three warnings. The first is 'RuntimeWarning: Mean of empty slice' for the line where I calculate the value variable. I set a condition in case I have all nan values to skip this line, but the warning did not go away. I was wondering what the reason is. The other two warnings are for when the less and greater_equal conditions do not meet which make sense to me since they might be nan values.