I am finetuning BERT for a binary sentiment analysis class using Tensorflow. I want to use a custom training loop/loss function. However, when I train the model I get the following error: ValueError: Internal error: Tried to take gradients (or similar) of a variable without handle data: Tensor("transformer_encoder/StatefulPartitionedCall:1019", shape=(), dtype=resource)
.
To debug, I tried simplifying my training loop to just compute standard binary cross entropy, which should be equivalent to if I called model.fit() with binary cross entropy as the loss function (which works completely fine). However, I get the same error as above when running this simplified training loop and I am not sure what's causing it. Note: I am using tensorflow 2.3.0.
Here is the model:
def create_model():
max_seq_length = 512
input_word_ids = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf.int32,
name="input_word_ids")
input_mask = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf.int32,
name="input_mask")
input_type_ids = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf.int32,
name="input_type_ids")
bert_layer = hub.KerasLayer("https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/2", trainable=True)
pooled_output, sequence_output = bert_layer([input_word_ids, input_mask, input_type_ids])
drop = tf.keras.layers.Dropout(0.3)(pooled_output)
output = tf.keras.layers.Dense(1, activation='sigmoid', name="output")(drop)
model = tf.keras.Model(
inputs={
'input_word_ids': input_word_ids,
'input_mask': input_mask,
'input_type_ids': input_type_ids
},
outputs= output
)
return model
Here is the training loop function. The issue seems to come up when running ypred = model(train_x)
inside tf.GradientTape():
def train_step(train_batch):
train_x, train_y = train_batch
with tf.GradientTape() as tape:
ypred = model(train_x)
loss = tf.reduce_mean(tf.keras.losses.binary_crossentropy(train_y, ypred))
grads = tape.gradient(loss, model.trainable_weights)
optimizer.apply_gradients(zip(grads, model.trainable_weights))
return loss
Again, this seems to only happen with tf.GradientTape(), since model.fit() does not result in any issues.
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=2e-5),
loss=tf.keras.losses.BinaryCrossentropy(),
metrics=[tf.keras.metrics.BinaryAccuracy()])
model.fit(train_data,
validation_data=valid_data,
epochs=epochs,
verbose=1)