I am trying to run BART language model for a text generation task.
My code was working fine when I used for another encoder-decoder model (T5), but with bart I am getting this error:
File "train_bart.py", line 89, in train
outputs = model(input_ids = ids, attention_mask = mask, decoder_input_ids=y_ids, labels=lm_labels) cs-lab-host1" 12:39 10-Aug-21
File ".../venv/tf_23/lib/python3.6/site-packages/torch/nn/modules/module.py", line 1051, in _call_impl
return forward_call(*input, **kwargs)
File ".../venv/tf_23/lib/python3.6/site-packages/transformers/models/bart/modeling_bart.py", line 1308, in forward
return_dict=return_dict,
File ".../venv/tf_23/lib/python3.6/site-packages/torch/nn/modules/module.py", line 1051, in _call_impl
return forward_call(*input, **kwargs)
File ".../venv/tf_23/lib/python3.6/site-packages/transformers/models/bart/modeling_bart.py", line 1196, in forward
return_dict=return_dict,
File ".../venv/tf_23/lib/python3.6/site-packages/torch/nn/modules/module.py", line 1051, in _call_impl
return forward_call(*input, **kwargs)
File ".../venv/tf_23/lib/python3.6/site-packages/transformers/models/bart/modeling_bart.py", line 985, in forward
attention_mask, input_shape, inputs_embeds, past_key_values_length
File ".../venv/tf_23/lib/python3.6/site-packages/transformers/models/bart/modeling_bart.py", line 866, in _prepare_decoder_attent
ion_mask
).to(self.device)
RuntimeError: CUDA error: device-side assert triggered
CUDA kernel errors might be asynchronously reported at some other API call,so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1.
And this is where error happens:
for _, data in tqdm(enumerate(loader, 0), total=len(loader), desc='Processing batches..'):
y = data['target_ids'].to(device, dtype = torch.long)
y_ids = y[:, :-1].contiguous()
lm_labels = y[:, 1:].clone().detach()
lm_labels[y[:, 1:] == tokenizer.pad_token_id] = -100
ids = data['source_ids'].to(device, dtype = torch.long)
mask = data['source_mask'].to(device, dtype = torch.long)
outputs = model(input_ids = ids, attention_mask = mask, decoder_input_ids=y_ids, labels=lm_labels)
loss = outputs[0]
loader
is the tokenized and processed data.