I am new to R and I am using it to analyse time series data (I am also new to this).
I have quarterly data for 15 years and I am interested in exploring the interplay between drinking and smoking rates in young people - treating smoking as the outcome variable. I was advised to use the gls command in the nlme package as this would allow me to include AR and MA terms. I know I could use more complex approaches like ARIMAX but as a first step, I would like to use simpler models.
After loading the data, specify the time series
data.ts = ts(data=data$smoke, frequency=4, start=c(data[1, "Year"], data[1, "Quarter"]))
data.ts.dec = decompose(data.ts)
After decomposing the data and some tests (KPSS and ADF test), it is clear that the data are not stationary so I differenced the data:
diff_dv<-diff(data$smoke, difference=1)
plot.ts(diff_dv, main="differenced")
data.diff.ts = ts(diff_dv, frequency=4, start=c(hse[1, "Year"], hse[1, "Quarter"]))
The ACF and PACF plots suggest AR(2) should also be included so I set up the model as:
mod.gls = gls(diff_dv ~ drink+time , data = data,
correlation=corARMA(p=2), method="ML")
However, when I run this command I get the following:
"Error in model.frame.default: variable lengths differ".
I understand from previous posts that this is due to the differencing and the fact that the diff_dv is now shorter. I have attempted fixing this by modifying the code but neither approach works:
mod.gls = gls(diff_dv ~ drink+time , data = data[1:(length(data)-1), ],
correlation=corARMA(p=2), method="ML")
mod.gls = gls(I(c(diff(smoke), NA)) ~ drink+time+as.factor(quarterly) , data = data,
correlation=corARMA(p=2), method="ML")
Can anyone help with this? Is there a workaround which would allow me to run the -gls- command or is there an alternative approach which would be equivalent to the -gls- command?
As a side question, is it OK to include time as I do - a variable with values 1 to 60? A similar question is for the quarters which I included as dummies to adjust for possible seasonality - is this OK?
Your help is greatly appreciated!