I use a generalized linear mixed model (GLMM) with quasi-Poisson regression and fit the model with multivariate normal random effects, using Penalized Quasi-Likelihood, i.e. glmmPQL. The output is as follows:
Income variable has 3 categories, low income, lower middle income, upper middle income. In the output, low income appears to be refence category but I dont know how should ı interpret and report this.
Thank you so much in advance.
Linear mixed-effects model fit by maximum likelihood
Data: my_scaled_data
AIC BIC logLik
NA NA NA
Random effects:
Formula: ~1 | country
(Intercept) Residual
StdDev: 1.191246 7.062197
Variance function:
Structure: fixed weights
Formula: ~invwt
Fixed effects: protests ~ stringency + cpi + income
Value Std.Error DF t-value p-value
(Intercept) 3.993691 0.3732307 428 10.700329 0.0000
stringency 0.152788 0.0322449 428 4.738373 0.0000
cpi -0.509498 0.3093523 428 -1.646984 0.1003
incomelower middle income -0.028550 0.2156300 428 -0.132403 0.8947
incomeupper middle income -0.528267 0.2520429 428 -2.095941 0.0367
Correlation:
(Intr) strngn cpi incmlmi
stringency -0.005
cpi 0.065 -0.311
incomelower middle income -0.302 -0.089 0.056
incomeupper middle income -0.244 -0.060 -0.004 0.539
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-1.6874331 -0.4638920 -0.1344516 0.2557120 10.2539363
Number of Observations: 444
Number of Groups: 12