I'm trying to run an optimization with SNOPT.
Right now as I run it I consistently get exit condition 41.
I've added the following parameters to the solver:
prog.SetSolverOption(solver.solver_id(),"Function Precision","1e-6")
prog.SetSolverOption(solver.solver_id(),"Major Optimality Tolerance","1e-3")
prog.SetSolverOption(solver.solver_id(),"Superbasics limit","600")
#print("Trying to Solve")
result = solver.Solve(prog)
print(result.is_success())
But I still contently get the same exit condition.
The error seems to be from the interpolation function I'm using. (When I remove it I no longer get the error).
t, c, k = interpolate.splrep(sref, kapparef, s=0, k=3)
kappafnc = interpolate.BSpline(t, c, k, extrapolate=False)
Here is the function I think I determined was causing the issue:
def car_continous_dynamics(self, state, force, steering):
beta = steering
s = state[0]
#print(s)
n = state[1]
alpha = state[2]
v = state[3]
#State = s, n, alpha , v
#s= distance along the track, n = perpendicular distance along the track
#alpha = velocity angle relative to the track
#v= magnitude of the velocity of the car
s_val = 0
if s.value() >0:
s_val = s.value()
Cm1 = 0.28
Cm2 = 0.05
Cr0 = 0.011
Cr2 = 0.006
m = 0.043
phi_dot = v*beta*15.5
Fxd = (Cm1 - Cm2 * v) * force - Cr2 * v * v - Cr0 *tanh(5 * v)
s_dot = v*cos(alpha+.5*beta)/(1)##-n*self.kappafunc(s_val))
n_dot= v*sin(alpha+.5*beta)
alpha_dot = phi_dot #-s_dot*self.kappafunc(s_val)
v_dot=Fxd/m*cos(beta*.5)
# concatenate velocity and acceleration
#print(s_dot)
#print(n_dot)
#print(alpha_dot)
#print(v_dot)
state_dot = np.array((s_dot,n_dot,alpha_dot,v_dot))
#print("State dot")
#print(state_dot.dtype.name)
#print(state_dot)
#print(state_dot)
return state_dot
``