In my experience, "packed" structs are almost always a bad idea. They don't always do what people think they do, and they might do other things as well. Depending on compilers, target processors, options, etc., you might find the compiler generating code that uses multiple byte accesses to things that you expect to be 16-bit or 32-bit accesses.
Hardware registers are always going to be properly aligned on a microcontroller. (Bitfields may be a different matter, but you are not using bitfields here.) But there might be gaps or padding.
And the whole idea of trying to access this using a pointer to a uint32_t is wrong. Don't access data via pointer casts like this - in fact, if you see a pointer cast at all, be highly suspicious.
So how do you get a structure that matches a hardware structure exactly? You write it out explicitly, and you use compile-time checks to be sure:
#pragma GCC diagnostic error "-Wpadded"
struct TestStruct {
uint8_t test1;
uint8_t padding;
uint16_t test2;
};
_Static_assert(sizeof(struct TestStruct) == 4, "Size check");
The padding is explicit. Any mistakes will be caught by the compiler.
What if you really, really want an unaligned 16-bit field in the middle here, and you haven't made a mistake in reading the datasheets? Use bitfields:
#pragma GCC diagnostic error "-Wpadded"
struct TestStruct2 {
uint32_t test1 : 8;
uint32_t test2 : 16;
uint32_t padding : 8;
};
_Static_assert(sizeof(struct TestStruct2) == 4, "Size check");
Put the padding in explicitly. Tell the compiler to complain about missing padding, and also check the size. The compiler doesn't charge for the extra microsecond of work.
And what if you really, really, really need to access this as a uint32_t ? You use a union for type-punning (though not with C++) :
union TestUnion {
uint32_t raw;
struct TestStruct2 s;
};