I have an implicit function, and I'm trying to plot the derivative of the solution of this function.
The function is:
p = \[Phi]/(1/\[Beta]) + ((1 - \[Phi]) \[Phi] (1 - \[Lambda]) \
\[Beta])/(((W - A) 1/\[Beta] + \[Phi] A/
p) 1/\[Beta] + \[Phi]*(1 - \[Phi]) A/p)/(
1/\[Beta] (\[Lambda]/((W - A) 1/\[Beta] + \[Phi] (A/
p) ) + (1 - \[Lambda])/(((W - A) 1/\[Beta] + \[Phi] A/
p) 1/\[Beta] + \[Phi] (1 - \[Phi]) A/p)))
And I would like to plot the derivative of the following expression w.r.t \[Phi]
\[Phi]/p ((1-\[Phi]) A + 1/\[Beta] A )
I've been trying to first solve for p
explicitly, and plug the solution into the expression above and plot the derivative of the expression, but kept getting an error. My code is :
Manipulate[
ans = p /.
Solve[p - \[Phi]/(
1/\[Beta]) - ((1 - \[Phi]) \[Phi] (1 - \[Lambda]) \[Beta])/(((W \
- A) 1/\[Beta] + \[Phi] A/p) 1/\[Beta] + \[Phi]*(1 - \[Phi]) A/p)/(
1/\[Beta] (\[Lambda]/((W - A) 1/\[Beta] + \[Phi] (A/
p) ) + (1 - \[Lambda])/(((W - A) 1/\[Beta] + \[Phi] A/
p) 1/\[Beta] + \[Phi] (1 - \[Phi]) A/p))) == 0, p],
Plot[Evaluate[
D[f[\[Phi]] == \[Phi]/
ans[[2]] ((1 - \[Phi]) A + 1/\[Beta] A), \[Phi]]], {\[Phi],
0.01, 1}], {A, 10, 500}, {\[Beta], 0.001, 1}, {W, 100,
10^9}, {\[Lambda], 0.01, 1}]
The error I'm getting is:
"Manipulate:Manipulate argument \
Plot[Evaluate[\!\(\*SubscriptBox[\(\[PartialD]\), \(\[Phi]\)]\((f[\
\[Phi]] == \((\[Phi]\\\ Power[<<2>>])\)\\\ \((Times[<<2>>] +
Times[<<2>>])\))\)\)],{\[Phi],0.01,1}] does not have the correct \
form for a variable specification"
What am I doing wrong?
Thank you!