I have attempted to translate pytorch implementation of a NN model which calculates forces and energies in molecular structures to TensorFlow. This needed a custom training loop and custom loss function so I implemented to different one step training functions below.
- First using Nested Gradient Tapes.
def calc_gradients(D_train_batch, E_train_batch, F_train_batch, opt):
#set up gradient tape scope in order to track gradients of both d(Loss)/d(Weights)
#and d(output)/d(input)
with tf.GradientTape() as tape1:
with tf.GradientTape() as tape2:
#set gradient tape to watch Tensor
tape2.watch(D_train_batch)
#pass D thru model to get predicted energy vals
E_pred = model(D_train_batch, training=True)
df_dD_train_batch = tape2.gradient(E_pred, D_train_batch)
#matrix mult of -Grad_D(f) x Grad_r(D)
F_pred = -tf.einsum('ijkl,il->ijk', dD_dr_train_batch, df_dD_train_batch)
#calculate loss value
loss = force_energy_loss(E_pred, F_pred, E_train_batch, F_train_batch)
grads = tape1.gradient(loss, model.trainable_weights)
opt.apply_gradients(zip(grads, model.trainable_weights))
- Other attempt with gradient tape (persistent = true)
def calc_gradients_persistent(D_train_batch, E_train_batch, F_train_batch, opt):
#set up gradient tape scope in order to track gradients of both d(Loss)/d(Weights)
#and d(output)/d(input)
with tf.GradientTape(persistent = True) as outer:
#set gradient tape to watch Tensor
outer.watch(D_train_batch)
#output values from model, set trainable to be true to get
#model.trainable_weights out
E_pred = model(D_train_batch, training=True)
#set gradient tape to watch trainable weights
outer.watch(model.trainable_weights)
#get gradient of output (f/E_pred) w.r.t input (D/D_train_batch) and cast to double
df_dD_train_batch = outer.gradient(E_pred, D_train_batch)
#matrix mult of -Grad_D(f) x Grad_r(D)
F_pred = -tf.einsum('ijkl,il->ijk', dD_dr_train_batch, df_dD_train_batch)
#calculate loss value
loss = force_energy_loss(E_pred, F_pred, E_train_batch, F_train_batch)
#get gradient of loss w.r.t to trainable weights for back propogation
grads = outer.gradient(loss, model.trainable_weights)
#updates weights using the optimizer and the gradients (grads)
opt.apply_gradients(zip(grads, model.trainable_weights))
These were attempted translations of the pytorch code
# Forward pass: Predict energies from the descriptor input
E_train_pred_batch = model(D_train_batch)
# Get derivatives of model output with respect to input variables. The
# torch.autograd.grad-function can be used for this, as it returns the
# gradients of the input with respect to outputs. It is very important
# to set the create_graph=True in this case. Without it the derivatives
# of the NN parameters with respect to the loss from the force error
# will not be populated (=the force error will not affect the
# training), but the model will still run fine without errors.
df_dD_train_batch = torch.autograd.grad(
outputs=E_train_pred_batch,
inputs=D_train_batch,
grad_outputs=torch.ones_like(E_train_pred_batch),
create_graph=True,
)[0]
# Get derivatives of input variables (=descriptor) with respect to atom
# positions = forces
F_train_pred_batch = -torch.einsum('ijkl,il->ijk', dD_dr_train_batch, df_dD_train_batch)
# Zero gradients, perform a backward pass, and update the weights.
# D_train_batch.grad.data.zero_()
optimizer.zero_grad()
loss = energy_force_loss(E_train_pred_batch, E_train_batch, F_train_pred_batch, F_train_batch)
loss.backward()
optimizer.step()
which is from the tutorial for the Dscribe library at https://singroup.github.io/dscribe/latest/tutorials/machine_learning/forces_and_energies.html
Question
Using either versions of the TF implementation there is a huge loss in prediction accuracy compared to running the pytorch version. I was wondering, have I maybe misunderstood the pytorch code and translated incorrectly and if so where is my discrepancy?
P.S Model directly computes energies E, from which we use the gradient of E w.r.t D in order to calculate the forces F. The loss function is a weighted sum of MSE of both Force and energies.