I have a multinomial logit model with two individual specific variables (first and age). I would like to conduct the hmftest to check if the IIA holds.
My dataset looks like this:
head(df)
mode choice first age
1 both 1 0 24
2 pre 1 1 23
3 both 1 2 53
4 post 1 3 43
5 no 1 1 55
6 both 1 2 63
I adjusted it for the mlogit to:
mode choice first age idx
1 TRUE 1 0 24 1:both
2 FALSE 1 0 24 1:no
3 FALSE 1 0 24 1:post
4 FALSE 1 0 24 1:pre
5 FALSE 1 1 23 2:both
6 FALSE 1 1 23 2:no
7 FALSE 1 1 23 2:post
8 TRUE 1 1 23 2:pre
9 TRUE 1 2 53 3:both
10 FALSE 1 2 53 3:no
~~~ indexes ~~~~
id1 id2
1 1 both
2 1 no
3 1 post
4 1 pre
5 2 both
6 2 no
7 2 post
8 2 pre
9 3 both
10 3 no
indexes: 1, 2
My original (full) model runs as follows:
full <- mlogit(mode ~ 0 | first + age, data = df_mlogit, reflevel = "no")
leading to the following result:
Call:
mlogit(formula = mode ~ 0 | first + age, data = df_mlogit, reflevel = "no",
method = "nr")
Frequencies of alternatives:choice
no both post pre
0.2 0.4 0.2 0.2
nr method
18 iterations, 0h:0m:0s
g'(-H)^-1g = 8.11E-07
gradient close to zero
Coefficients :
Estimate Std. Error z-value Pr(>|z|)
(Intercept):both 2.0077e+01 1.0441e+04 0.0019 0.9985
(Intercept):post -4.1283e-01 1.4771e+04 0.0000 1.0000
(Intercept):pre 5.3346e-01 1.4690e+04 0.0000 1.0000
first1:both -4.0237e+01 1.1059e+04 -0.0036 0.9971
first1:post -8.9168e-01 1.4771e+04 -0.0001 1.0000
first1:pre -6.6805e-01 1.4690e+04 0.0000 1.0000
first2:both -1.9674e+01 1.0441e+04 -0.0019 0.9985
first2:post -1.8975e+01 1.5683e+04 -0.0012 0.9990
first2:pre -1.8889e+01 1.5601e+04 -0.0012 0.9990
first3:both -2.1185e+01 1.1896e+04 -0.0018 0.9986
first3:post 1.9200e+01 1.5315e+04 0.0013 0.9990
first3:pre 1.9218e+01 1.5237e+04 0.0013 0.9990
age:both 2.1898e-02 2.9396e-02 0.7449 0.4563
age:post 9.3377e-03 2.3157e-02 0.4032 0.6868
age:pre -1.2338e-02 2.2812e-02 -0.5408 0.5886
Log-Likelihood: -61.044
McFadden R^2: 0.54178
Likelihood ratio test : chisq = 144.35 (p.value = < 2.22e-16)
To test for IIA, I exclude one alternative from the model (here "pre") and run the model as follows:
part <- mlogit(mode ~ 0 | first + age, data = df_mlogit, reflevel = "no",
alt.subset = c("no", "post", "both"))
leading to
Call:
mlogit(formula = mode ~ 0 | first + age, data = df_mlogit, alt.subset = c("no",
"post", "both"), reflevel = "no", method = "nr")
Frequencies of alternatives:choice
no both post
0.25 0.50 0.25
nr method
18 iterations, 0h:0m:0s
g'(-H)^-1g = 6.88E-07
gradient close to zero
Coefficients :
Estimate Std. Error z-value Pr(>|z|)
(Intercept):both 1.9136e+01 6.5223e+03 0.0029 0.9977
(Intercept):post -9.2040e-01 9.2734e+03 -0.0001 0.9999
first1:both -3.9410e+01 7.5835e+03 -0.0052 0.9959
first1:post -9.3119e-01 9.2734e+03 -0.0001 0.9999
first2:both -1.8733e+01 6.5223e+03 -0.0029 0.9977
first2:post -1.8094e+01 9.8569e+03 -0.0018 0.9985
first3:both -2.0191e+01 1.1049e+04 -0.0018 0.9985
first3:post 2.0119e+01 1.1188e+04 0.0018 0.9986
age:both 2.1898e-02 2.9396e-02 0.7449 0.4563
age:post 1.9879e-02 2.7872e-02 0.7132 0.4757
Log-Likelihood: -27.325
McFadden R^2: 0.67149
Likelihood ratio test : chisq = 111.71 (p.value = < 2.22e-16)
However when I want to codnuct the hmftest then the following error occurs:
> hmftest(full, part)
Error in solve.default(diff.var) :
system is computationally singular: reciprocal condition number = 4.34252e-21
Does anyone have an idea where the problem might be?