I am new to detectron2 and this is my first project. After reading the docs and using the tutorials as a guide, I trained my model on the custom dataset and performed the evaluation.
I would now like to make predictions on images I receive via an API by loading this saved model. I could not find any reading materials that could help me with this task.
To save my model, I have used this link as a reference - https://detectron2.readthedocs.io/en/latest/tutorials/models.html
I am able to save my trained model using the following code-
from detectron2.modeling import build_model
model = build_model(cfg) # returns a torch.nn.Module
from detectron2.checkpoint import DetectionCheckpointer
checkpointer = DetectionCheckpointer(model, save_dir="output")
checkpointer.save("model_final") # save to output/model_final.pth
But I am still confused as to how I can go about implementing what I want. I could use some guidance on what my next steps should be. Would be extremely grateful to anyone who can help.