0

I have 2 datasets and applying 5 different ML models.

Dataset 1:

def dataset_1():
    ...
    ...
    bike_data_hours = bike_data_hours[:500]
    X = bike_data_hours.iloc[:, :-1].values
    y = bike_data_hours.iloc[:, -1].values
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
    return X_train, X_test, y_train.reshape(-1, 1), y_test.reshape(-1, 1)

The shape is (400, 14) (100, 14) (400, 1) (100, 1). The dtypes: object (int64, float64).

Dataset 2:

def dataset_2():
    ...
    ...
    final_movie_df = final_movie_df[:500]
    X = final_movie_df.iloc[:, :-1]
    y = final_movie_df.iloc[:, -1]
    gs = GroupShuffleSplit(n_splits=2, test_size=0.2)
    train_ix, test_ix = next(gs.split(X, y, groups=X.UserID))
    X_train = X.iloc[train_ix]
    y_train = y.iloc[train_ix]
    X_test = X.iloc[test_ix]
    y_test = y.iloc[test_ix]
    return X_train.shape, X_test.shape, y_train.values.reshape(-1,1).shape, y_test.values.reshape(-1,1).shape

The shape is (400, 25) (100, 25) (400, 1) (100, 1). The dtypes: object (int64, float64).

I am using different models. The code is

    X_train, X_test, y_train, y_test = dataset
    fold_residuals, fold_dfs = [], []
    kf = KFold(n_splits=k, shuffle=True)
    for train_index, _ in kf.split(X_train):
        if reg_name == "RF" or reg_name == "SVR":
            preds = regressor.fit(X_train[train_index], y_train[train_index].ravel()).predict(X_test)
        elif reg_name == "Knn-5":
            preds = regressor.fit(X_train[train_index], np.ravel(y_train[train_index], order="C")).predict(X_test)
        else:
            preds = regressor.fit(X_train[train_index], y_train[train_index]).predict(X_test)

But I am getting a common error like this, this, and this. I have gone through all of these posts, but getting no idea about the error. I have used iloc and values given as a solution for the visited links.

preds = regressor.fit(X_train[train_index], y_train[train_index]).predict(X_test)
  File "/home/fgd/.local/lib/python3.8/site-packages/pandas/core/frame.py", line 3030, in __getitem__
    indexer = self.loc._get_listlike_indexer(key, axis=1, raise_missing=True)[1]
  File "/home/fgd/.local/lib/python3.8/site-packages/pandas/core/indexing.py", line 1266, in _get_listlike_indexer
    self._validate_read_indexer(keyarr, indexer, axis, raise_missing=raise_missing)
  File "/home/fgd/.local/lib/python3.8/site-packages/pandas/core/indexing.py", line 1308, in _validate_read_indexer
    raise KeyError(f"None of [{key}] are in the [{axis_name}]")
KeyError: "None of [Int64Index([  0,   1,   3,   4,   5,   6,   7,   9,  10,  11,\n            ...\n            387, 388, 389, 390, 391, 392, 393, 395, 397, 399],\n           dtype='int64', length=320)] are in the [columns]"

Here, if I use train_test_split instead of GroupShuffleSplit then the code is working. However, I want to use GroupShuffleSplit based on the UserID so that the same user does not split for both train and test. Could you tell me how can I solve the problem while I will use GroupShuffleSplit?

Could you tell me why I am getting the error for dataset_2 while dataset_1 is working fully fine (and the shape and dtypes) are the same for both datasets.

Opps_0
  • 408
  • 4
  • 19

1 Answers1

1

You have to use values for your dataset_2. Do changes

    X_train = X.iloc[train_ix].values
    y_train = y.iloc[train_ix].values
    X_test = X.iloc[test_ix].values
    y_test = y.iloc[test_ix].values
    return X_train.shape, X_test.shape, y_train.reshape(-1,1).shape, y_test.reshape(-1,1).shape

Hopefully now will work

0Knowledge
  • 747
  • 3
  • 14