I'm trying to count kafka message key, by using direct runner.
If I put max_num_records =20 in ReadFromKafka, I can see results printed or outputed to text. like:
('2102', 5)
('2706', 5)
('2103', 5)
('2707', 5)
But without max_num_records, or if max_num_records is larger than message count in kafka topic, the program keeps running but nothing is outputed. If I try to output with beam.io.WriteToText, there will be an empty temp folder created, like: beam-temp-StatOut-d16768eadec511eb8bd897b012f36e97
Terminal shows:
2.30.0: Pulling from apache/beam_java8_sdk
Digest: sha256:720144b98d9cb2bcb21c2c0741d693b2ed54f85181dbd9963ba0aa9653072c19
Status: Image is up to date for apache/beam_java8_sdk:2.30.0
docker.io/apache/beam_java8_sdk:2.30.0
If I put 'enable.auto.commit': 'true' in kafka consumer config, the messages are commited, other clients from the same group can't read them, so I assume it's reading succesfully, just not processing or outputing.
I tried Fixed-time, Sliding time windowing, with or without different trigger, nothing changes.
Tried flink runner, got same result as direct runner.
No idea what I did wrong, any help?
environment: centos 7
anaconda
python 3.8.8
java 1.8.0_292
beam 2.30
code as below:
direct_options = PipelineOptions([
"--runner=DirectRunner",
"--environment_type=LOOPBACK",
"--streaming",
])
direct_options.view_as(SetupOptions).save_main_session = True
direct_options.view_as(StandardOptions).streaming = True
conf = {'bootstrap.servers': '192.168.75.158:9092',
'group.id': "g17",
'enable.auto.commit': 'false',
'auto.offset.reset': 'earliest'}
if __name__ == '__main__':
with beam.Pipeline(options = direct_options) as p:
msg_kv_bytes = ( p
| 'ReadKafka' >> ReadFromKafka(consumer_config=conf,topics=['LaneIn']))
messages = msg_kv_bytes | 'Decode' >> beam.MapTuple(lambda k, v: (k.decode('utf-8'), v.decode('utf-8')))
counts = (
messages
| beam.WindowInto(
window.FixedWindows(10),
trigger = AfterCount(1),#AfterCount(4),#AfterProcessingTime
# allowed_lateness=3,
accumulation_mode = AccumulationMode.ACCUMULATING) #ACCUMULATING #DISCARDING
# | 'Windowsing' >> beam.WindowInto(window.FixedWindows(10, 5))
| 'TakeKeyPairWithOne' >> beam.MapTuple(lambda k, v: (k, 1))
| 'Grouping' >> beam.GroupByKey()
| 'Sum' >> beam.MapTuple(lambda k, v: (k, sum(v)))
)
output = (
counts
| 'Print' >> beam.ParDo(print)
# | 'WriteText' >> beam.io.WriteToText('/home/StatOut',file_name_suffix='.txt')
)