1

I have two data frames and I want to add them one on top of another, joined by 3 columns, but also keep columns from both data frames.

The two data frames are:

data_top = [{'Date': '15/06/2021', 'Code_top': 'a', 'ID_top': 1, 'Portfolio_top':100, 'Currency': 'EUR', 'Country': 'France', 'Sector': 'Finance', 'Name':'Bradley', 'Classification': 'xyz', 'Data_Type':0, 'Value': 3000000.5,'Weight': 0.05, 'Floor': 'Flag'}, 
    {'Date': '15/06/2021', 'Code_top': 'b', 'ID_top': 2, 'Portfolio_top':200, 'Currency': 'EUR', 'Country': 'Germany', 'Sector': 'Real Estate', 'Name':'ApartmentsInc.', 'Classification': 'xyz', 'Data_Type':0, 'Value': 2000000.5,'Weight': 0.02, 'Floor': 'Flag'}]


data_bottom = [{'Code_bottom': 'a', 'ID_bottom': 1, 'Portfolio_bottom':100, 'Price': 151.9, 'Delta': -1000},    
           {'Code_bottom': 'b', 'ID_bottom': 2, 'Portfolio_bottom':200, 'Price': 25.5, 'Delta': 1000}]

data_top = pd.DataFrame(data_top)
data_bottom = pd.DataFrame(data_bottom)

The final results should look like this:'

data_combined = [{'Date': '15/06/2021', 'Code_top': 'a',    'ID_top': 1, 'Portfolio_top':100, 'Currency': 'EUR', 'Country': 'France', 'Sector': 'Finance', 'Name':'Bradley', 'Classification': 'xyz', 'Data_Type':0, 'Value': 3000000.5,'Weight': 0.05, 'Floor': 'Flag'}, 
             {'Date': '15/06/2021', 'Code_top': 'b',    'ID_top': 2, 'Portfolio_top':200, 'Currency': 'EUR', 'Country': 'Germany', 'Sector': 'Real Estate', 'Name':'ApartmentsInc.', 'Classification': 'xyz', 'Data_Type':0, 'Value': 2000000.5,'Weight': 0.02, 'Floor': 'Flag'},
             {'Date': '15/06/2021', 'Code_top': 'a',    'ID_top': 1, 'Portfolio_top':100, 'Currency': 'EUR', 'Country': 'France', 'Sector': 'Finance', 'Name':'Bradley.', 'Classification': 'xyz', 'Data_Type':0, 'Value': 3000000.5,'Weight': 0.05, 'Floor': 'Flag', 'Price':151.9, 'Delta':-1000},
             {'Date': '15/06/2021', 'Code_top': 'b',    'ID_top': 2, 'Portfolio_top':200, 'Currency': 'EUR', 'Country': 'Germany', 'Sector': 'Real Estate', 'Name':'ApartmentsInc.', 'Classification': 'xyz', 'Data_Type':0, 'Value': 2000000.5,'Weight': 0.02, 'Floor': 'Flag', 'Price': 25.5, 'Delta': 1000},
             ]

data_top = pd.DataFrame(data_top)

the two data frames and the final result

I have made some attempts but I was unsuccessful. Could anyone help me with this? Thank you in advance!

martineau
  • 119,623
  • 25
  • 170
  • 301
StefaaanP
  • 47
  • 1
  • 4

1 Answers1

0

I hope I've understood your question right:

x = data_top.merge(
    data_bottom,
    left_on=["Code_top", "ID_top", "Portfolio_top"],
    right_on=["Code_bottom", "ID_bottom", "Portfolio_bottom"],
)
out = pd.concat([data_top, x[data_top.columns.tolist() + ["Price", "Delta"]]])
print(out)

Prints:

         Date Code_top  ID_top  Portfolio_top Currency  Country       Sector            Name Classification  Data_Type      Value  Weight Floor  Price   Delta
0  15/06/2021        a       1            100      EUR   France      Finance         Bradley            xyz          0  3000000.5    0.05  Flag    NaN     NaN
1  15/06/2021        b       2            200      EUR  Germany  Real Estate  ApartmentsInc.            xyz          0  2000000.5    0.02  Flag    NaN     NaN
0  15/06/2021        a       1            100      EUR   France      Finance         Bradley            xyz          0  3000000.5    0.05  Flag  151.9 -1000.0
1  15/06/2021        b       2            200      EUR  Germany  Real Estate  ApartmentsInc.            xyz          0  2000000.5    0.02  Flag   25.5  1000.0
Andrej Kesely
  • 168,389
  • 15
  • 48
  • 91