Can i implement the cross-correlation in the same way as the convolution?
I want to implement the formula in as in the picture, where Li the kernel in 4 different direction filters; Ci is the magnitude map for direction i. So what I did is to find the cross-correlation in the four directions separately and add them up. I learned that the cross correlation can be the same as convolution in image line sharping; s as the result should be stroke line of an image but what I actually get are discrete points. I am not sure if I implemented the formula correctly. Please help
private static void sharpTheLine(){
int[][] cC_0= crossCorrelation(KERNEL_0,CMap_0);
int[][] cC_45=crossCorrelation(KERNEL_45,CMap_45);
int[][] cC_90=crossCorrelation(KERNEL_90,CMap_90);
int[][] cC_135=crossCorrelation(KERNEL_135,CMap_135);
//generate S
for(int i=0; i<imageWidth; i++){
for(int j =0; j<imageHight; j++) {
SMap[i][j] = cC_0[i][j]+cC_45[i][j]+cC_90[i][j]+cC_135[i][j];
}
}
}
private static int[][] crossCorrelation(int [][] kernel,int[][] CMapVal){
int horizontalWalk = imageWidth - K_R;
int verticalWalk = imageHight - K_C;
int res[][]=new int[imageWidth][imageHight];
for (int i = 0; i < horizontalWalk; i++) {
for (int j = 0; j < verticalWalk; j++) {
int sample[][] = new int[K_R][K_C];
for (int k = i; k < K_R + i; k++) {
for (int m = j; m < K_C + j; m++) {
sample[k - i][m - j] = CMapVal[k][m];
OnePixelConvolution(sample, i, j, kernel, res);
}
}
}
}
return res;
}
private static void OnePixelConvolution(int[][] sample, int x, int y, int [][]kernel, int [][] res) {
int resrgb = 0;
for (int i = 0; i < K_R; i++) {
for (int j = 0; j < K_C; j++) {
resrgb = resrgb + sample[i][j] * kernel[i][j];
}
}
res[x][y] = resrgb;
}